176
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Topical Delivery of Levocarnitine to the Cornea and Anterior Eye by Thermosensitive in-situ Gel for Dry Eye Disease

, , , , , , , , , ORCID Icon, & show all
Pages 2357-2373 | Published online: 02 Jun 2021

References

  • HollandEJ, MannisMJ, LeeWB. Ocular surface disease: cornea, conjunctiva and tear film: expert consult-online and print. Elsevier Health Sci. 2013.
  • LiuNN, LiuL, LiJ, SunYZ. Prevalence of and risk factors for dry eye symptom in mainland China: a systematic review and meta-analysis. J Ophthalmol. 2014;2014:2014. doi:10.1155/2014/748654
  • CraigJP, NicholsKK, AkpekEK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–283. doi:10.1016/j.jtos.2017.05.00828736335
  • GaytonJL. Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol. 2009;3(1):405–412. doi:10.2147/OPTH.S555519688028
  • JohnsonME, MurphyPJ. Changes in the tear film and ocular surface from dry eye syndrome. Prog Retin Eye Res. 2004;23(4):449–474.15219877
  • StapletonF, AlvesM, BunyaVY, et al. Tfos dews ii epidemiology report. Ocul Surf. 2017;15(3):334–365.28736337
  • BronAJ, de PaivaCS, ChauhanSK, et al. Tfos dews ii pathophysiology report. Ocul Surf. 2017;15(3):438–510.28736340
  • JonesL, DownieLE, KorbD, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575–628.28736343
  • KhajaviN, ReinachPS, SkrzypskiM, LudeA, MerglerS. L-carnitine reduces in human conjunctival epithelial cells hypertonic-induced shrinkage through interacting with TRPV1 channels. Cell Physiol Biochem. 2014;34(3):790–803. doi:10.1159/00036304325170901
  • HuaX, SuZ, DengR, LinJ, LiDQ, PflugfelderSC. Effects of L-carnitine, erythritol and betaine on pro-inflammatory markers in primary human corneal epithelial cells exposed to hyperosmotic stress. Curr Eye Res. 2015;40(7):657–667. doi:10.3109/02713683.2014.95777625271595
  • HuoJ, XieHP, LiJ, ZhouD. A primary study of L-carnitine protective effect on corneal and conjunctival epithelium of mouse dry eye model induced by hyperosmolar saline. Chin J Opthalmol. 2012;48(4):330.
  • BhattacharjeeA, DasPJ, AdhikariP, et al. Novel drug delivery systems for ocular therapy: with special reference to liposomal ocular delivery. Eur J Ophthalmol. 2019;29(1):113–126. doi:10.1177/112067211876977629756507
  • ChoiSW, KimJ. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials. 2018;11(7):1125. doi:10.3390/ma11071125
  • PatelA, CholkarK, AgrahariV, MitraAK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64. doi:10.5497/wjp.v2.i2.4725590022
  • NguyenDD, LaiJY. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem. 2020;11(44):6988–7008. doi:10.1039/D0PY00919A
  • WuY, LiuY, LiX, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14(1):1–15. doi:10.1016/j.ajps.2018.04.00832104434
  • YadavKS, RajpurohitR, SharmaS. Glaucoma: current treatment and impact of advanced drug delivery systems. Life Sci. 2019;21:362–376. doi:10.1016/j.lfs.2019.02.029
  • LaiJY, LuoLJ, NguyenDD. Multifunctional glutathione-dependent hydrogel eye drops with enhanced drug bioavailability for glaucoma therapy. Chem Eng J. 2020;402:126190. doi:10.1016/j.cej.2020.126190
  • PengchengT, JunW. Preparation and ocular retention of aciclovir chitosan eye-drops. J Guangdong Pharm Univ. 2013;29(3):225–228.
  • NanL. Study of diclofenac temperature sensitive hydrogel with bioadhesive eye. Chin J Med Guide. 2015;17(02):177–179.
  • LiYJ, LuoLJ, HarrounSG, et al. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale. 2019;11(12):5580–5594. doi:10.1039/C9NR00376B30860532
  • LuoLJ, NguyenDD, LaiJY. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. Mater Sci Eng C. 2020;15:111095. doi:10.1016/j.msec.2020.111095
  • LuoLJ, LaiJY. Epigallocatechin gallate-loaded gelatin-g-poly (N-isopropylacrylamide) as a new ophthalmic pharmaceutical formulation for topical use in the treatment of dry eye syndrome. Sci Rep. 2017;7(1):1–14. doi:10.1038/s41598-016-0028-x28127051
  • ChenW, ZhangX, LiJ, et al. Efficacy of osmoprotectants on prevention and treatment of murine dry eye. Invest Ophthalmol Vis Sci. 2013;54(9):6287–6297. doi:10.1167/iovs.13-1208123970467
  • AcarD, Molina-MartínezIT, Gómez-BallesterosM, Guzmán-NavarroM, Benítez-del-CastilloJM, Herrero-VanrellR. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Cont Lens Anterior Eye. 2018;41(1):93–96. doi:10.1016/j.clae.2017.11.00429223649
  • KwonS, KimSH, KhangD, LeeJY. Potential therapeutic usage of nanomedicine for glaucoma treatment. Int J Nanomedicine. 2020;5:5745. doi:10.2147/IJN.S254792
  • HirataniH, FujiwaraA, TamiyaY, MizutaniY, Alvarez-LorenzoC. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials. 2005;26(11):1293–1298. doi:10.1016/j.biomaterials.2004.04.03015475059
  • CamillieriG, BucoloC, RossiS, DragoF. Hyaluronan-induced stimulation of corneal wound healing is a pure pharmacological effect. J Ocul Pharmacol Th. 2004;20(6):548–553. doi:10.1089/jop.2004.20.548
  • GomesJ, AmankwahR, Powell-RichardsA, DuaH. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Briti J Ophthalmol. 2004;88(6):821–825. doi:10.1136/bjo.2003.027573
  • DickerKT, GurskiLA, Pradhan-BhattS, WittRL, Farach-CarsonMC, JiaX. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10(4):1558–1570.24361428
  • ThomasL. Analysis of draize eye irritation testing and its prediction by mining publicly available 2008–2014 REACH data. Altex. 2016;33(2):123–134. doi:10.14573/altex.151005326863293
  • ChenW, ZhangX, LiuM, et al. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis. Exp Eye Res. 2009;89(3):311–318. doi:10.1016/j.exer.2009.03.01519345212
  • DengR, SuZ, HuaX, ZhangZ, LiDQ, PflugfelderSC. Osmoprotectants suppress the production and activity of matrix metalloproteinases induced by hyperosmolarity in primary human corneal epithelial cells. Mol Vis. 2014;20(2):1243.25352733
  • HuaX, DengR, LiJ, et al. Protective effects of L-carnitine against oxidative injury by hyperosmolarity in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2015;56(9):5503–5511. doi:10.1167/iovs.14-1624726284556
  • InatomiT, Spurr-MichaudS, TisdaleAS, ZhanQ, FeldmanST, GipsonIK. Expression of secretory mucin genes by human conjunctival epithelia. Invest Ophthalmol Vis Sci. 1996;37(8):1684–1692.8675412
  • PaulsenFP, BerryMS. Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem. 2006;41(1):1–53.16798129
  • ArgüesoP, Guzman-AranguezA, MantelliF, CaoZ, RicciutoJ, PanjwaniN. Association of cell surface mucins with galectin-3 contributes to the ocular surface epithelial barrier. J Biol Chem. 2009;284(34):23037–23045. doi:10.1074/jbc.M109.03333219556244
  • YañEz-SotoB, MannisMJ, SchwabIR, et al. Interfacial phenomena and the ocular surface. Ocul Surf. 2014;12(3):178–201.24999101
  • BaudouinC, RolandoM, Del CastilloJMB, et al. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res. 2019;1:68–87.
  • LempMA. The mucin-deficient dry eye. Int Ophthalmol Clin. 1973;13(1):185–189. doi:10.1097/00004397-197301310-000134724257