120
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Exploration of the Effect and Mechanism of Fructus Lycii, Rehmanniae Radix Praeparata, and Paeonia lactiflora in the Treatment of AMD Based on Network Pharmacology and in vitro Experimental Verification

, , , , , , , & show all
Pages 2831-2842 | Published online: 28 Jun 2021

References

  • WongWL, SuX, LiX, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–116. doi:10.1016/s2214-109x(13)70145-125104651
  • MartinDF, MaguireMG, FineSL, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119(7):1388–1398. doi:10.1016/j.ophtha.2012.03.05322555112
  • NebbiosoM, LambiaseA, CeriniA, LimoliPG, La CavaM, GrecoA. Therapeutic approaches with intravitreal injections in geographic atrophy secondary to age-related macular degeneration: current drugs and potential molecules. Int J Mol Sci. 2019;20(7):1693. doi:10.3390/ijms20071693
  • KleinR, KleinBEK, LintonKLP. Prevalence of age-related maculopathy: the beaver dam eye study. Ophthalmology. 2020;127(4):S122–s132. doi:10.1016/j.ophtha.2020.01.03332200811
  • CherepanoffS, McMenaminP, GilliesMC, KettleE, SarksSH. Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol. 2010;94(7):918–925. doi:10.1136/bjo.2009.16556319965817
  • HanusJ, AndersonC, WangS. RPE necroptosis in response to oxidative stress and in AMD. Ageing Res Rev. 2015;24(Pt B):286–298. doi:10.1016/j.arr.2015.09.00226369358
  • TakayamaK, KanekoH, KataokaK, et al. Nuclear factor (erythroid-derived)-related factor 2-associated retinal pigment epithelial cell protection under blue light-induced oxidative stress. Oxid Med Cell Longev. 2016;2016:8694641. doi:10.1155/2016/869464127774118
  • SattaS, MahmoudAM, WilkinsonFL, Yvonne AlexanderM, WhiteSJ. The role of Nrf2 in cardiovascular function and disease. Oxid Med Cell Longev. 2017;2017:9237263. doi:10.1155/2017/923726329104732
  • FelszeghyS, ViiriJ, PaternoJJ, et al. Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biol. 2019;20:1–12. doi:10.1016/j.redox.2018.09.01130253279
  • BroadheadGK, GriggJR, ChangAA, McCluskeyP. Dietary modification and supplementation for the treatment of age-related macular degeneration. Nutr Rev. 2015;73(7):448–462. doi:10.1093/nutrit/nuv00526081455
  • XiC, DanQ, TianMingH, WeiW. Efficacy in the treatment of dry age-related macular degeneration by traditional Chinese medicine: a meta analysis. Lishizhen Med Materia Medica Res. 2019;30(09):2273–2276.
  • FangY, LiuX, SuJ, RehmanK. Network pharmacology analysis of traditional Chinese medicine formula Shuang Di Shou Zhen tablets treating nonexudative age-related macular degeneration. Evid Based Complement Altern Med. 2021;2021:6657521. doi:10.1155/2021/6657521
  • SaiL, DongL. Clinical application and discrimination of Qiju Dihuang Wan and Mingmu Dihuang Wan. China J Tradition Chin Med Pharm. 2013;28(07):2186–2188.
  • XuX, HangL, HuangB, WeiY, ZhengS, LiW. Efficacy of ethanol extract of Fructus lycii and its constituents lutein/zeaxanthin in protecting retinal pigment epithelium cells against oxidative stress: in vivo and in vitro models of age-related macular degeneration. J Ophthalmol. 2013;2013:862806. doi:10.1155/2013/86280624163760
  • ZhuX, WangK, ZhouF, ZhuL. Paeoniflorin attenuates atRAL-induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in retinal pigment epithelial cells via triggering Ca(2+)/CaMKII-dependent activation of AMPK. Arch Pharm Res. 2018;41(10):1009–1018. doi:10.1007/s12272-018-1059-630117083
  • YueSJ, XinLT, FanYC, et al. Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep. 2017;7:40318. doi:10.1038/srep4031828074863
  • TaoW, XuX, WangX, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;145(1):1–10. doi:10.1016/j.jep.2012.09.05123142198
  • GeQ, ChenL, TangM, et al. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur J Pharmacol. 2018;833:50–62. doi:10.1016/j.ejphar.2018.05.02129782863
  • ZhaiJ, SongZ, WangY, et al. Zhixiong Capsule (ZXC), a traditional Chinese patent medicine, prevents atherosclerotic plaque formation in rabbit carotid artery and the related mechanism investigation based on network pharmacology and biological research. Phytomedicine. 2019;59:152776. doi:10.1016/j.phymed.2018.11.03631004886
  • LiuH, WangJ, ZhouW, WangY, YangL. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J Ethnopharmacol. 2013;146(3):773–793. doi:10.1016/j.jep.2013.02.00423415946
  • WaltersWP, MurckoMA. Prediction of ‘drug-likeness’. Adv Drug Deliv Rev. 2002;54(3):255–271. doi:10.1016/s0169-409x(02)00003-011922947
  • ZhangXF, ChenJ, YangJL, ShiYP. UPLC-MS/MS analysis for antioxidant components of Lycii Fructus based on spectrum-effect relationship. Talanta. 2018;180:389–395. doi:10.1016/j.talanta.2017.12.07829332828
  • LamP, CheungF, TanHY, WangN, YuenMF, FengY. Hepatoprotective effects of Chinese medicinal herbs: a focus on anti-inflammatory and anti-oxidative activities. Int J Mol Sci. 2016;17(4):465. doi:10.3390/ijms1704046527043533
  • NeelamK, DeyS, SimR, LeeJ, Au EongKG. Fructus lycii: a natural dietary supplement for amelioration of retinal diseases. Nutrients. 2021;13:1. doi:10.3390/nu13010246
  • YeM, MoonJ, YangJ, et al. The standardized Lycium chinense fruit extract protects against Alzheimer’s disease in 3xTg-AD mice. J Ethnopharmacol. 2015;172:85–90. doi:10.1016/j.jep.2015.06.02626102549
  • LiuL, LaoW, JiQS, YangZH, YuGC, ZhongJX. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis. Int J Ophthalmol. 2015;8(1):11–16. doi:10.3980/j.issn.2222-3959.2015.01.0225709900
  • GongW, ZhangN, ChengG, et al. Rehmannia glutinosa libosch extracts prevent bone loss and architectural deterioration and enhance osteoblastic bone formation by regulating the IGF-1/PI3K/mTOR pathway in streptozotocin-induced diabetic rats. Int J Mol Sci. 2019;20(16):3964. doi:10.3390/ijms20163964
  • YuanH, NiX, ZhengM, HanX, SongY, YuM. Effect of catalpol on behavior and neurodevelopment in an ADHD rat model. Biomed Pharmacother. 2019;118:109033. doi:10.1016/j.biopha.2019.10903331545235
  • LiuC, MaR, WangL, et al. Rehmanniae Radix in osteoporosis: a review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. J Ethnopharmacol. 2017;198:351–362. doi:10.1016/j.jep.2017.01.02128111216
  • KeD, XiaoxiaG, FengW, PeiXiW, MeiQX. Research progress on quality and efficacy evaluation of Rehmanniae Radix Praeparata based on pharmacodynamic material basis. Chin Tradition Herbal Drugs. 2019;50(06):1477–1484.
  • XueChunW, WeiZ, YaTuG, YiBoG. Protective effects of rehmannia glutinosa,wolfberry and the mixed extracts on light-induced retinal injury of mice. Recent Adv Ophthalmol. 2021;41(01):12–17. doi:10.13389/j.cnki.rao.2021.0003
  • ParkerS, MayB, ZhangC, ZhangAL, LuC, XueCC. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother Res. 2016;30(9):1445–1473. doi:10.1002/ptr.565327279421
  • ZhuQ, LiuM, HeY, YangB. Quercetin protect cigarette smoke extracts induced inflammation and apoptosis in RPE cells. Artif Cells, Nanomed Biotechnol. 2019;47(1):2010–2015. doi:10.1080/21691401.2019.160821731122072
  • MoineE, BoukhallatM, CiaD, et al. New lipophenols prevent carbonyl and oxidative stresses involved in macular degeneration. Free Radic Biol Med. 2020. doi:10.1016/j.freeradbiomed.2020.10.316
  • DuW, AnY, HeX, ZhangD, HeW. Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage. Oxid Med Cell Longev. 2018;2018:1610751. doi:10.1155/2018/161075130584457
  • YuanZ, DuW, HeX, ZhangD, HeW. Tribulus terrestris ameliorates oxidative stress-induced ARPE-19 cell injury through the PI3K/Akt-Nrf2 signaling pathway. Oxid Med Cell Longev. 2020;2020:7962393. doi:10.1155/2020/796239332774685
  • SchonhoffCM, GastonB, MannickJB. Nitrosylation of cytochrome c during apoptosis. J Biol Chem. 2003;278(20):18265–18270. doi:10.1074/jbc.M21245920012646553
  • LiP, NijhawanD, WangX. Mitochondrial activation of apoptosis. Cell. 2004;116(2):S57–59,52 p following S59. doi:10.1016/s0092-8674(04)00031-515055583
  • WengS, MaoL, GongY, SunT, GuQ. Role of quercetin in protecting ARPE‑19 cells against H2O2‑induced injury via nuclear factor erythroid 2 like 2 pathway activation and endoplasmic reticulum stress inhibition. Mol Med Rep. 2017;16(3):3461–3468. doi:10.3892/mmr.2017.696428713895
  • Xie W, Yu W, Zhou M, et al. Protective effect of paeoniflorin against oxidative stress in human retinal pigment epithelium in vitro. Mol Vis. 2011;17:3512–3522.22219646
  • DuL, ChenJ, XingYQ. Eupatilin prevents H(2)O(2)-induced oxidative stress and apoptosis in human retinal pigment epithelial cells. Biomed Pharmacother. 2017;85:136–140. doi:10.1016/j.biopha.2016.11.10827930977
  • JustilienV, PangJJ, RenganathanK, et al. SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci. 2007;48(10):4407–4420. doi:10.1167/iovs.07-043217898259
  • KaarnirantaK, UusitaloH, BlasiakJ, et al. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res. 2020;79:100858. doi:10.1016/j.preteyeres.2020.10085832298788
  • SaitoY, KuseY, InoueY, NakamuraS, HaraH, ShimazawaM. Transient acceleration of autophagic degradation by pharmacological Nrf2 activation is important for retinal pigment epithelium cell survival. Redox Biol. 2018;19:354–363. doi:10.1016/j.redox.2018.09.00430216854