416
Views
20
CrossRef citations to date
0
Altmetric
Review

Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review

, , , ORCID Icon, , , & ORCID Icon show all
Pages 3619-3641 | Published online: 20 Aug 2021

References

  • FeiginVL, NicholsE, AlamT. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–480. doi:10.1016/S1474-4422(18)30499-X30879893
  • PandianJD, GallSL, KateMP, et al. Prevention of stroke: a global perspective. Lancet. 2018;392(10154):1269–1278. doi:10.1016/S0140-6736(18)31269-830319114
  • HachinskiV, EinhäuplK, GantenD, et al. Preventing dementia by preventing stroke: the Berlin Manifesto. Alzheimers Dement. 2019;15(7):961–984. doi:10.1016/j.jalz.2019.06.00131327392
  • 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17(3):327–406. doi:10.1002/alz.1232833756057
  • LawtonMT, VatesGE. Subarachnoid Hemorrhage. N Engl J Med. 2017;377(3):257–266. doi:10.1056/NEJMcp160582728723321
  • AmarencoP, KimAS. Aspirin’s benefits were previously underestimated and are primarily accrued in the acute setting. Stroke. 2017;48(5):1438–1440. doi:10.1161/STROKEAHA.117.01506128411262
  • ThelenganaA, RadhakrishnanDM, PrasadM, KumarA, PrasadK. Tenecteplase versus alteplase in acute ischemic stroke: systematic review and meta-analysis. Acta Neurol Belg. 2019;119(3):359–367. doi:10.1007/s13760-018-0933-929728903
  • LiDD, ZhangYH, ZhangW, ZhaoP. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front Neurosci. 2019;13:472. doi:10.3389/fnins.2019.0047231156366
  • MohammadiS, JafariB, AsgharianP, MartorellM, Sharifi-RadJ. Medicinal plants used in the treatment of malaria: a key emphasis to artemisia, cinchona, cryptolepis, and tabebuia genera. Phytother Res. 2020;34(7):1556–1569. doi:10.1002/ptr.662832022345
  • ChoJ-H, JungJ-Y, LeeB-J, LeeK, ParkJ-W, BuY. Epimedii herba: a promising herbal medicine for neuroplasticity. Phytother Res. 2017;31(6):838–848. doi:10.1002/ptr.580728382688
  • WangL, LiY, GuoY, et al. Herba Epimedii: an ancient Chinese herbal medicine in the prevention and treatment of osteoporosis. Curr Pharm Des. 2016;22(3):328–349. doi:10.2174/138161282266615111214590726561074
  • ShenHB, ZhouYN, ZhengJ, ZhuRH. [“Multi-component-multi-target-multi-pathway” mechanism of Kuihua Hugan Tablets based on network pharmacology]. Zhongguo Zhong Yao Za Zhi. 2019;44(7):1464–1474. (Chinese). doi:10.19540/j.cnki.cjcmm.20181214.00331090306
  • LiuB, XuC, WuX, et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience. 2015;294:193–205. doi:10.1016/j.neuroscience.2015.02.05325791226
  • WangG-Q, Li-D-D, HuangC, et al. Icariin reduces dopaminergic neuronal loss and microglia-mediated inflammation in vivo and in vitro. Front Mol Neurosci. 2017;10:441. doi:10.3389/fnmol.2017.0044129375304
  • JinF, GongQ-H, XuY-S, et al. Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int J Neuropsychopharmacol. 2014;17(6):871–881. doi:10.1017/S146114571300153324513083
  • ZhangL, ShenC, ChuJ, ZhangR, LiY, LiL. Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimer’s disease. Int J Biol Sci. 2014;10(2):181–191. doi:10.7150/ijbs.623224550686
  • ZhangB, WangG, HeJ, et al. Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner. J Neuroinflammation. 2019;16(1):92. doi:10.1186/s12974-019-1472-x31010422
  • ChenS-J, CuiM-C. Systematic understanding of the mechanism of salvianolic acid A via computational target fishing. Molecules. 2017;22(4). doi:10.3390/molecules22040644
  • WangY, MaJ, WangS, et al. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19. Eur Rev Med Pharmacol Sci. 2020;24:3360–3384.32271454
  • LiS, ZhangB. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–120. doi:10.1016/S1875-5364(13)60037-023787177
  • Fuentes-PardoAP, RuzzanteDE. Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol Ecol. 2017;26(20):5369–5406. doi:10.1111/mec.1426428746784
  • WangY, QiuJ, LuoS, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater. 2016;3(4):257–267. doi:10.1093/rb/rbw02127482467
  • MaH, HeX, YangY, LiM, HaoD, JiaZ. The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2011;134(3):519–541. doi:10.1016/j.jep.2011.01.00121215308
  • KimJY, ShimSH. Epimedium koreanum extract and its flavonoids reduced atherosclerotic risk via suppressing modification of human HDL. Nutrients. 2019;11(5):1110. doi:10.3390/nu11051110
  • WagnerH, BauerR, MelchartD, XiaoP-G, StaudingerA. Chromatographic Fingerprint Analysis of Herbal Medicines. Springer; 2011.
  • KangHK, LeeSB, KwonH, SungCK, ParkYI, DongMS. Peripubertal administration of icariin and icaritin advances pubertal development in female rats. Biomol Ther (Seoul). 2012;20(2):189–195. doi:10.4062/biomolther.2012.20.2.18924116294
  • HuangJM, BaoY, XiangW, et al. Icariin regulates the bidirectional differentiation of bone marrow mesenchymal stem cells through canonical Wnt signaling pathway. Evid Based Complement Alternat Med. 2017;2017:8085325. doi:10.1155/2017/808532529445413
  • SzeSCW, TongY, NgTB, ChengCLY, CheungHP. Herba Epimedii: anti-oxidative properties and its medical implications. Molecules. 2010;15(11):7861–7870. doi:10.3390/molecules1511786121060294
  • DingC. [Determination of icarim in luohan jindan oral liquid by thin-layer chromatography]. Zhongguo Zhong Yao Za Zhi. 1990;15(10):604–6, 640. (Chinese).2268397
  • DuQ, XiaM, ItoY. Purification of icariin from the extract of Epimedium segittatum using high-speed counter-current chromatography. J Chromatogr A. 2002;962(1–2):239–241. doi:10.1016/s0021-9673(02)00538-112198968
  • HuangRH, ZhouYC, HanW, DengX. [Study on water extraction process of Herba epimedii with microwave technology]. Zhongguo Zhong Yao Za Zhi. 2005;30(2):107–110. (Chinese).15714811
  • HeW, SunH, YangB, ZhangD, KabelitzD. Immunoregulatory effects of the herba Epimediia glycoside icariin. Arzneimittelforschung. 1995;45(8):910–913.7575760
  • LeeMK, ChoiYJ, SungSH, ShinDI, KimJW, KimYC. Antihepatotoxic activity of icariin, a major constituent of Epimedium koreanum. Planta Med. 1995;61(6):523–526. doi:10.1055/s-2006-9593628824946
  • LiuZQ, LuoXY, SunYX, et al. The antioxidative effect of icariin in human erythrocytes against free-radical-induced haemolysis. J Pharm Pharmacol. 2004;56(12):1557–1562. doi:10.1211/002235704486915563763
  • GongMJ, HanB, WangSM, LiangSW, ZouZJ. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J Pharm Biomed Anal. 2016;123:63–73. doi:10.1016/j.jpba.2016.02.00126874256
  • KurodaM, MimakiY, SashidaY, et al. Flavonol glycosides from Epimedium sagittatum and their neurite outgrowth activity on PC12h cells. Planta Med. 2000;66(6):575–577. doi:10.1055/s-2000-861110985091
  • LiC, LiQ, MeiQ, LuT. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 2015;126:57–68. doi:10.1016/j.lfs.2015.01.00625634110
  • LongZ, WuJ, XiangW, ZengZ, YuG, LiJ. Exploring the mechanism of Icariin in osteoporosis based on a network pharmacology strategy. Med Sci Monit. 2020;26:e924699. doi:10.12659/msm.92469933230092
  • MunirN, MahmoodZ, YameenM, MustafaG. Therapeutic response of Epimedium gandiflorum’s different doses to restore the antioxidant potential and reproductive hormones in male albino rats. Dose Response. 2020;18(3):1559325820959563. doi:10.1177/155932582095956332973420
  • MartensS, MithöferA. Flavones and flavone synthases. Phytochemistry. 2005;66(20):2399–2407. doi:10.1016/j.phytochem.2005.07.01316137727
  • LiZH, KeZC, FengL, JiaXB. [Preparation method and pharmacological effect of baohuoside I]. Zhongguo Zhong Yao Za Zhi. 2018;43(17):3444–3450. (Chinese). doi:10.19540/j.cnki.cjcmm.20180702.00730347910
  • ParkY, WooSH, SeoSK, et al. Ginkgetin induces cell death in breast cancer cells via downregulation of the estrogen receptor. Oncol Lett. 2017;14(4):5027–5033. doi:10.3892/ol.2017.674229085516
  • WangZ, WangD, YangD, ZhenW, ZhangJ, PengS. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int. 2018;29(3):535–544. doi:10.1007/s00198-017-4255-129110063
  • JinJ, WangH, HuaX, ChenD, HuangC, ChenZ. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol. 2019;842:20–32. doi:10.1016/j.ejphar.2018.10.00630342950
  • NicolinV, De TommasiN, NoriSL, CostantinidesF, BertonF, Di LenardaR. Modulatory effects of plant polyphenols on bone remodeling: a prospective view from the bench to bedside. Front Endocrinol (Lausanne). 2019;10:494. doi:10.3389/fendo.2019.0049431396157
  • ChoKS, LimYR, LeeK, LeeJ, LeeJH, LeeIS. Terpenes from forests and human health. Toxicol Res. 2017;33(2):97–106. doi:10.5487/tr.2017.33.2.09728443180
  • BianQ, HuangJH, YangZ, et al. [Effects of active ingredients in three kidney-tonifying Chinese herbal drugs on gene expression profile of bone marrow stromal cells from a rat model of corticosterone-induced osteoporosis]. Zhong Xi Yi Jie he Xue Bao. 2011;9(2):179–185. (Chinese). doi:10.3736/jcim2011021121288454
  • ShuB, ZhaoY, WangY, et al. Oleanolic acid enhances mesenchymal stromal cell osteogenic potential by inhibition of notch signaling. Sci Rep. 2017;7(1):7002. doi:10.1038/s41598-017-07633-728765584
  • CaoS, DongXL, HoMX, et al. Oleanolic acid exerts osteoprotective effects and modulates vitamin D metabolism. Nutrients. 2018;10(2):Feb. doi:10.3390/nu10020247
  • CastellanoJM, Garcia-RodriguezS, EspinosaJM, Millan-LinaresMC, RadaM, PeronaJS. Oleanolic acid exerts a neuroprotective effect against microglial cell activation by modulating cytokine release and antioxidant defense systems. Biomolecules. 2019;9(11):Nov. doi:10.3390/biom9110683
  • RongZT, GongXJ, SunHB, LiYM, JiH. Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H(2)O(2)-induced injury in vitro. Pharm Biol. 2011;49(1):78–85. doi:10.3109/13880209.2010.49913020684747
  • ZhaoD, ZhengL, QiL, et al. Structural features and potent antidepressant effects of total sterols and β-sitosterol extracted from Sargassum horneri. Mar Drugs. 2016;14(7):123. doi:10.3390/md14070123
  • NonakaY, TakagiT, InaiM, et al. Lauric acid stimulates ketone body production in the KT-5 astrocyte cell line. J Oleo Sci. 2016;65(8):693–699. doi:10.5650/jos.ess1606927430387
  • DongX, FuJ, YinX, et al. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016;30(8):1207–1218. doi:10.1002/ptr.563127188216
  • Kukula-KochW, Kruk-SłomkaM, StępnikK, SzalakR, BiałaG. The evaluation of pro-cognitive and antiamnestic properties of berberine and magnoflorine isolated from barberry species by centrifugal partition chromatography (CPC), in relation to QSAR modelling. Int J Mol Sci. 2017;18(12):2511. doi:10.3390/ijms18122511
  • AtochinDN, ChernyshevaGA, SmolyakovaVI, et al. Neuroprotective effects of p-tyrosol after the global cerebral ischemia in rats. Phytomedicine. 2016;23(7):784–792. doi:10.1016/j.phymed.2016.03.01527180226
  • ZhangM, WuY, XieL, et al. Isoliquiritigenin protects against blood‑brain barrier damage and inhibits the secretion of pro-inflammatory cytokines in mice after traumatic brain injury. Int Immunopharmacol. 2018;65:64–75. doi:10.1016/j.intimp.2018.09.04630290368
  • PiñeroJ, BravoÀ, Queralt-RosinachN, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–D839. doi:10.1093/nar/gkw94327924018
  • ZhangJ, LiH, ZhangY, ZhaoC, ZhuY, HanM. Uncovering the pharmacological mechanism of stemazole in the treatment of neurodegenerative diseases based on a network pharmacology approach. Int J Mol Sci. 2020;21(2). doi:10.3390/ijms21020427
  • UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699. doi:10.1093/nar/gky09229425356
  • SzklarczykD, GableAL, LyonD, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky113130476243
  • AshburnerM, BallCA, BlakeJA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29. doi:10.1038/7555610802651
  • BindeaG, MlecnikB, HacklH, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England). 2009;25(8):1091–1093. doi:10.1093/bioinformatics/btp101
  • MlecnikB, GalonJ, BindeaG. Automated exploration of gene ontology term and pathway networks with ClueGO-REST. Bioinformatics (Oxford, England). 2019;35(19):3864–3866. doi:10.1093/bioinformatics/btz163
  • MlecnikB, GalonJ, BindeaG. Comprehensive functional analysis of large lists of genes and proteins. J Proteomics. 2018;171:2–10. doi:10.1016/j.jprot.2017.03.01628343001
  • MontañezR, Sánchez-JiménezF, QuesadaAR, MedinaMÁ. Exploring and challenging the network of angiogenesis. Sci Rep. 2011;1:61. doi:10.1038/srep0006122355580
  • KanehisaM, GotoS. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.2710592173
  • SunJ, ZhangL, HeY, et al. To unveil the molecular mechanisms of Qi and blood through systems biology-based investigation into Si-Jun-Zi-Tang and Si-Wu-Tang formulae. Sci Rep. 2016;6:34328. doi:10.1038/srep3432827677604
  • WangY, FuX, XuJ, WangQ, KuangH. Systems pharmacology to investigate the interaction of berberine and other drugs in treating polycystic ovary syndrome. Sci Rep. 2016;6:28089. doi:10.1038/srep2808927306862
  • YuG, WangL-G, HanY, HeQ-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.011822455463
  • RitchieME, PhipsonB, WuD, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv00725605792
  • NorwitzNG, MotaAS, NorwitzSG, ClarkeK. Multi-loop model of Alzheimer disease: an integrated perspective on the Wnt/GSK3β, α-Synuclein, and type 3 diabetes hypotheses. Front Aging Neurosci. 2019;11:184. doi:10.3389/fnagi.2019.0018431417394
  • ChenJ, WangM, Waheed KhanRA, et al. The GSK3B gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. J Affect Disord. 2015;185:149–155. doi:10.1016/j.jad.2015.06.04026186530
  • PláteníkJ, FišarZ, BuchalR, et al. GSK3β, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:83–93. doi:10.1016/j.pnpbp.2013.12.00124334212
  • ZhangY, HuangN-Q, YanF, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res. 2018;339:57–65. doi:10.1016/j.bbr.2017.11.01529158110
  • AngeloniC, BarbalaceMC, HreliaS. Icariin and its metabolites as potential protective phytochemicals against Alzheimer’s disease. Front Pharmacol. 2019;10:271. doi:10.3389/fphar.2019.0027130941046
  • CaiZ, ZhaoY, ZhaoB. Roles of glycogen synthase kinase 3 in Alzheimer’s disease. Curr Alzheimer Res. 2012;9(7):864–879. doi:10.2174/15672051280245538622272620
  • Llorens-MartínM, JuradoJ, HernándezF, AvilaJ. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 2014;7:46. doi:10.3389/fnmol.2014.0004624904272
  • HernandezF, LucasJJ, AvilaJ. GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis. 2013;33(Suppl 1):S141–S144. doi:10.3233/JAD-2012-12902522710914
  • YanX, UronenRL, HuttunenHJ. The interaction of α-synuclein and tau: a molecular conspiracy in neurodegeneration?Semin Cell Dev Biol. 2018. doi:10.1016/j.semcdb.2018.05.005
  • De FerrariGV, AvilaME, MedinaMA, Perez-PalmaE, BustosBI, AlarconMA. Wnt/β-catenin signaling in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2014;13(5):745–754. doi:10.2174/187152731266613122311390024365184
  • InksterB, ZaiG, LewisG, MiskowiakKW. GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders?Transl Psychiatry. 2018;8(1):216. doi:10.1038/s41398-018-0270-z30310078
  • ZhouA, LinK, ZhangS, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18(9):954–966. doi:10.1038/ncb339627501329
  • Fuster-MatanzoA, Llorens-MartínM, Sirerol-PiquerMS, García-VerdugoJM, AvilaJ, HernándezF. Dual effects of increased glycogen synthase kinase-3β activity on adult neurogenesis. Hum Mol Genet. 2013;22(7):1300–1315. doi:10.1093/hmg/dds53323257288
  • SudduthTL, SchmittFA, NelsonPT, WilcockDM. Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol Aging. 2013;34(4):1051–1059. doi:10.1016/j.neurobiolaging.2012.09.01223062700
  • Llorens-MartínM, Fuster-MatanzoA, TeixeiraCM, et al. GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Mol Psychiatry. 2013;18(4):451–460. doi:10.1038/mp.2013.423399915
  • NúñezMT, HidalgoC. Noxious iron-calcium connections in neurodegeneration. Front Neurosci. 2019;13:48. doi:10.3389/fnins.2019.0004830809110
  • JeongS. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol Cells. 2017;40(9):613–620. doi:10.14348/molcells.2017.009628927263
  • TanJZA, GleesonPA. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim Biophys Acta Biomembr. 2019;1861(4):697–712. doi:10.1016/j.bbamem.2018.11.01330639513
  • ShengC, XuP, ZhouK, DengD, ZhangC, WangZ. Icariin attenuates synaptic and cognitive deficits in an Aβ(1-42)-induced rat model of Alzheimer’s disease. Biomed Res Int. 2017;2017:7464872. doi:10.1155/2017/746487229057264
  • ŠpanićE, Langer HorvatL, HofPR, ŠimićG. Role of microglial cells in Alzheimer’s disease tau propagation. Front Aging Neurosci. 2019;11:271. doi:10.3389/fnagi.2019.0027131636558
  • TönniesE, TrushinaE. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1105–1121. doi:10.3233/jad-16108828059794
  • WuB, FengJ-Y, YuL-M, et al. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol. 2018;175(21):4137–4153. doi:10.1111/bph.1445730051466
  • ZhouYD, HouJG, YangG, et al. Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed Pharmacother. 2019;109:2309–2317. doi:10.1016/j.biopha.2018.11.10830551489
  • ZhengXX, ChenYW, YueYS, et al. Icariin ameliorates learning and memory impairments through ERK/CaMKIIα/CREB signaling and HPA axis in prenatally stressed female offspring. Biomed Pharmacother. 2019;117:109077. doi:10.1016/j.biopha.2019.10907731177064
  • SteelandS, GorléN, VandendriesscheC, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med. 2018;10(4):Apr. doi:10.15252/emmm.201708300
  • DecourtB, LahiriDK, SabbaghMN. Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res. 2017;14(4):412–425. doi:10.2174/156720501366616093011055127697064
  • FangJ, ZhangY. Icariin, an anti-atherosclerotic drug from Chinese medicinal herb horny goat weed. Front Pharmacol. 2017;8:734. doi:10.3389/fphar.2017.0073429075193
  • AlamJ, ScheperW. Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain. Autophagy. 2016;12(12):2516–2520. doi:10.1080/15548627.2016.123855527715387
  • XueL, JiangY, HanT, et al. Comparative proteomic and metabolomic analysis reveal the antiosteoporotic molecular mechanism of icariin from Epimedium brevicornu maxim. J Ethnopharmacol. 2016;192:370–381. doi:10.1016/j.jep.2016.07.03727422162
  • TysnesOB, StorsteinA. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017;124(8):901–905. doi:10.1007/s00702-017-1686-y28150045
  • CapriottiT, TerzakisK. Parkinson disease. Home Healthc Now. 2016;34(6):300–307. doi:10.1097/nhh.000000000000039827243427
  • LuDS, ChenC, ZhengYX, et al. Combination treatment of Icariin and L-DOPA against 6-OHDA-Lesioned dopamine neurotoxicity. Front Mol Neurosci. 2018;11:155. doi:10.3389/fnmol.2018.0015529867347
  • LeeEJ, ParkJS, LeeYY, KimDY, KangJL, KimHS. Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-κB, Nrf2, and PPAR-γ signaling pathways. J Neuroinflammation. 2018;15(1):326. doi:10.1186/s12974-018-1363-630470240
  • McKenzieJA, SpielmanLJ, PointerCB, et al. Neuroinflammation as a common mechanism associated with the modifiable risk factors for Alzheimer’s and Parkinson’s diseases. Curr Aging Sci. 2017;10(3):158–176. doi:10.2174/187460981066617031511324428302047
  • OhYS, KimJS, YooSW, HwangEJ, LyooCH, LeeKS. Striatal dopamine activity and myocardial (123) I-metaiodobenzylguanidineuptake in early Parkinson’s disease. Parkinsonism Relat Disord. 2019;63:156–161. doi:10.1016/j.parkreldis.2019.02.01230796009
  • ChenWF, WuL, DuZR, et al. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine. 2017;25:93–99. doi:10.1016/j.phymed.2016.12.01728190476
  • MorgantiJM, GouldingDS, Van EldikLJ. Deletion of p38α MAPK in microglia blunts trauma-induced inflammatory responses in mice. J Neuroinflammation. 2019;16(1):98. doi:10.1186/s12974-019-1493-531077217
  • HeJ, ZhongW, ZhangM, ZhangR, HuW. P38 mitogen-activated protein kinase and Parkinson’s disease. Transl Neurosci. 2018;9:147–153. doi:10.1515/tnsci-2018-002230473884
  • NiranjanR, MishraKP, ThakurAK. Inhibition of cyclooxygenase-2 (COX-2) initiates autophagy and potentiates MPTP-induced autophagic cell death of human neuroblastoma cells, SH-SY5Y: an inside in the pathology of Parkinson’s disease. Mol Neurobiol. 2018;55(10):8038–8050. doi:10.1007/s12035-018-0950-y29498006
  • GeZW, ZhuXL, WangBC, et al. MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int J Cardiol. 2019;280:152–159. doi:10.1016/j.ijcard.2018.12.07730679074
  • LiuJ, LiuL, SunJ, et al. Icariin protects hippocampal neurons from endoplasmic reticulum stress and NF-κB mediated apoptosis in fetal rat hippocampal neurons and asthma rats. Front Pharmacol. 2019;10:1660. doi:10.3389/fphar.2019.0166032082160
  • PutaalaJ. Ischemic stroke in young adults. Continuum (Minneap Minn). 2020;26(2):386–414. doi:10.1212/con.000000000000083332224758
  • SimonF, OberhuberA, FlorosN, et al. Acute limb Ischemia-much more than just a lack of oxygen. Int J Mol Sci. 2018;19(2):374. doi:10.3390/ijms19020374
  • LiC, SunH, XuG, McCarterKD, LiJ, MayhanWG. Mito-Tempo prevents nicotine-induced exacerbation of ischemic brain damage. J Appl Physiol. 2018;125(1):49–57. doi:10.1152/japplphysiol.01084.201729420160
  • MoloneyJN, CotterTG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64. doi:10.1016/j.semcdb.2017.05.02328587975
  • FörstermannU, XiaN, LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–735. doi:10.1161/circresaha.116.30932628209797
  • BlackerTS, DuchenMR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med. 2016;100:53–65. doi:10.1016/j.freeradbiomed.2016.08.01027519271
  • HuangQ, SunM, LiM, et al. Combination of NAD(+) and NADPH offers greater neuroprotection in ischemic stroke models by relieving metabolic stress. Mol Neurobiol. 2018;55(7):6063–6075. doi:10.1007/s12035-017-0809-729164394
  • DongH, MingS, FangJ, LiY, LiuL. Icariin ameliorates angiotensin II-induced cerebrovascular remodeling by inhibiting Nox2-containing NADPH oxidase activation. Hum Cell. 2019;32(1):22–30. doi:10.1007/s13577-018-0220-330386989
  • BelambriSA, RolasL, RaadH, Hurtado-NedelecM, DangPM, El-BennaJ. NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur J Clin Invest. 2018;48(Suppl 2):e12951. doi:10.1111/eci.1295129757466
  • TongH, ZhangX, MengX, LuL, MaiD, QuS. Simvastatin inhibits activation of NADPH oxidase/p38 mapk pathway and enhances expression of antioxidant protein in Parkinson disease models. Front Mol Neurosci. 2018;11:165. doi:10.3389/fnmol.2018.0016529872377
  • YangZ, QinW, HuoJ, ZhuoQ, WangJ, WangL. MiR-22 modulates the expression of lipogenesis-related genes and promotes hepatic steatosis in vitro. FEBS Open Bio. 2021;11(1):322–332. doi:10.1002/2211-5463.13026
  • PengXC, HuangJR, WangSW, et al. Traditional Chinese medicine in neuroprotection after brain insults with special reference to radioprotection. Evid Based Complement Alternat Med. 2018;2018:2767208. doi:10.1155/2018/276720830598683
  • HampelH, CaraciF, CuelloAC, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456. doi:10.3389/fimmu.2020.0045632296418
  • AnratherJ, IadecolaC. Inflammation and stroke: an overview. Neurotherapeutics. 2016;13(4):661–670. doi:10.1007/s13311-016-0483-x27730544
  • AridaA, ProtogerouAD, KitasGD, SfikakisPP. Systemic inflammatory response and atherosclerosis: the paradigm of chronic inflammatory rheumatic diseases. Int J Mol Sci. 2018;19(7):1890. doi:10.3390/ijms19071890
  • LiL, ZhaoQ, KongW. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018;68–69:490–506. doi:10.1016/j.matbio.2018.01.013
  • JiaH, MaH, LiZ, et al. Downregulation of LncRNA TUG1 inhibited TLR4 signaling pathway-mediated inflammatory damage after spinal cord ischemia reperfusion in rats via suppressing TRIL expression. J Neuropathol Exp Neurol. 2019;78(3):268–282. doi:10.1093/jnen/nly12630715406
  • JiL, DuQ, LiY, HuW. Puerarin inhibits the inflammatory response in atherosclerosis via modulation of the NF-κB pathway in a rabbit model. Pharmacol Rep. 2016;68(5):1054–1059. doi:10.1016/j.pharep.2016.06.00727505855
  • WuJS, TsaiHD, CheungWM, HsuCY, LinTN. PPAR-γ ameliorates neuronal apoptosis and ischemic brain injury via suppressing NF-κB-driven p22phox transcription. Mol Neurobiol. 2016;53(6):3626–3645. doi:10.1007/s12035-015-9294-z26108185
  • SuM, CaoJ, HuangJ, et al. The in vitro and in vivo anti-inflammatory effects of a phthalimide PPAR-γ agonist. Mar Drugs. 2017;15(1):7. doi:10.3390/md15010007
  • XiongD, DengY, HuangB, et al. Icariin attenuates cerebral ischemia-reperfusion injury through inhibition of inflammatory response mediated by NF-κB, PPARα and PPARγ in rats. Int Immunopharmacol. 2016;30:157–162. doi:10.1016/j.intimp.2015.11.03526679678
  • YangJ, ViteryMDC, ChenJ, Osei-OwusuJ, ChuJ, QiuZ. Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron. 2019;102(4):813–827.e6. doi:10.1016/j.neuron.2019.03.02930982627
  • Belov KirdajovaD, KriskaJ, TureckovaJ, AnderovaM. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020;14:51. doi:10.3389/fncel.2020.0005132265656
  • SunHS. Role of TRPM7 in cerebral ischaemia and hypoxia. J Physiol. 2017;595(10):3077–3083. doi:10.1113/jp27370927891609
  • JiangW, ZengM, CaoZ, et al. Icariin, a novel blocker of sodium and calcium channels, eliminates early and delayed afterdepolarizations, as well as triggered activity, in rabbit cardiomyocytes. Front Physiol. 2017;8:342. doi:10.3389/fphys.2017.0034228611679
  • YangC, HawkinsKE, DoréS, Candelario-JalilE. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019;316(2):C135–c153. doi:10.1152/ajpcell.00136.201830379577
  • LiF, GengX, YipJ, DingY. Therapeutic target and cell-signal communication of chlorpromazine and promethazine in attenuating blood-brain barrier disruption after ischemic stroke. Cell Transplant. 2019;28(2):145–156. doi:10.1177/096368971881944330569751
  • SinghWR, DeviHS, KumawatS, et al. Angiogenic and MMPs modulatory effects of icariin improved cutaneous wound healing in rats. Eur J Pharmacol. 2019;858:172466. doi:10.1016/j.ejphar.2019.17246631220437
  • RenXS, DingW, YangXY. [Neuroprotective effect of icariin on spinal cord injury in rats]. Zhongguo Gu Shang. 2018;31(11):1054–1060. (Chinese). doi:10.3969/j.issn.1003-0034.2018.11.01430514049
  • ShahK, RossieS. Tale of the good and the Bad Cdk5: remodeling of the Actin cytoskeleton in the brain. Mol Neurobiol. 2018;55(4):3426–3438. doi:10.1007/s12035-017-0525-328502042
  • ChengX, TanS, DuanF, YuanQ, LiQ, DengG. Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast Cancer. 2019;26(6):766–775. doi:10.1007/s12282-019-00980-531172425
  • WeiK, XuY, ZhaoZ, et al. Icariin alters the expression of glucocorticoid receptor, FKBP5 and SGK1 in rat brains following exposure to chronic mild stress. Int J Mol Med. 2016;38(1):337–344. doi:10.3892/ijmm.2016.259127221032
  • ZuY, MuY, LiQ, ZhangST, YanHJ. Icariin alleviates osteoarthritis by inhibiting NLRP3-mediated pyroptosis. J Orthop Surg Res. 2019;14(1):307. doi:10.1186/s13018-019-1307-631511005
  • LiuL, ZhaoZ, LuL, et al. Icariin and icaritin ameliorated hippocampus neuroinflammation via inhibiting HMGB1-related pro-inflammatory signals in lipopolysaccharide-induced inflammation model in C57BL/6 J mice. Int Immunopharmacol. 2019;68:95–105. doi:10.1016/j.intimp.2018.12.05530616172
  • WangY, ZhuT, WangM, et al. Icariin attenuates M1 activation of microglia and Aβ plaque accumulation in the hippocampus and prefrontal cortex by up-regulating PPARγ in restraint/isolation-stressed APP/PS1 mice. Front Neurosci. 2019;13:291. doi:10.3389/fnins.2019.0029131001073
  • ShiL, MaoT, LuoP, et al. [Effect of icariin on early steroid-induced osteonecrosis of the femoral head in rabbits]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020;34(2):206–212. (Chinese). doi:10.7507/1002-1892.20190511232030953
  • ZhangX, SunH, SuQ, et al. Antidepressant-like activity of icariin mediated by group I mGluRs in prenatally stressed offspring. Brain Dev. 2017;39(7):593–600. doi:10.1016/j.braindev.2017.03.02128395974
  • DumanRS. Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues Clin Neurosci. 2009;11(3):239–255.19877493
  • MoosaviM, MaghsoudiN, Zahedi-AslS, NaghdiN, YousefpourM, TrounceIA. The role of PI3/Akt pathway in the protective effect of insulin against corticosterone cell death induction in hippocampal cell culture. Neuroendocrinology. 2008;88(4):293–298. doi:10.1159/00015044118679014
  • CaoLH, QiaoJY, HuangHY, et al. PI3K-AKT signaling activation and icariin: the potential effects on the perimenopausal depression-like rat model. Molecules. 2019;24(20):3700. doi:10.3390/molecules24203700
  • SassariniDJ. Depression in midlife women. Maturitas. 2016;94:149–154. doi:10.1016/j.maturitas.2016.09.00427823736
  • KajtaM, WnukA, RzemieniecJ, et al. Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling. J Steroid Biochem Mol Biol. 2017;171:94–109. doi:10.1016/j.jsbmb.2017.03.00128263910
  • LinHY, TsaiJC, WuLY, PengWH. Reveals of new candidate active components in hemerocallis radix and its anti-depression action of mechanism based on network pharmacology approach. Int J Mol Sci. 2020;21(5). doi:10.3390/ijms21051868
  • LorschZS, LohYE, PurushothamanI, et al. Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nat Commun. 2018;9(1):1116. doi:10.1038/s41467-018-03567-429549264
  • LiX, PengB, PanY, et al. Icariin stimulates osteogenic differentiation and suppresses adipogenic differentiation of rBMSCs via estrogen receptor signaling. Mol Med Rep. 2018;18(3):3483–3489. doi:10.3892/mmr.2018.932530066871
  • JiangY, ZhangY, SuL. MiR-539-5p decreases amyloid β-protein production, hyperphosphorylation of tau and memory impairment by regulating PI3K/Akt/GSK-3β pathways in APP/PS1 double transgenic mice. Neurotox Res. 2020;38(2):524–535. doi:10.1007/s12640-020-00217-w32415525
  • Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):44. doi:10.1038/s41572-018-0046-z30410088
  • OwensB. Multiple sclerosis. Nature. 2016;540(7631):S1. doi:10.1038/540S1a27902684
  • DanikowskiKM, JayaramanS, PrabhakarBS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14(1):117. doi:10.1186/s12974-017-0892-828599652
  • SteinmanL, ZamvilSS. Beginning of the end of two-stage theory purporting that inflammation then degeneration explains pathogenesis of progressive multiple sclerosis. Curr Opin Neurol. 2016;29(3):340–344. doi:10.1097/wco.000000000000031727027554
  • RütherBJ, ScheldM, DreymuellerD, et al. Combination of cuprizone and experimental autoimmune encephalomyelitis to study inflammatory brain lesion formation and progression. Glia. 2017;65(12):1900–1913. doi:10.1002/glia.2320228836302
  • HaoH, ZhangQ, ZhuH, et al. Icaritin promotes tumor T-cell infiltration and induces antitumor immunity in mice. Eur J Immunol. 2019;49(12):2235–2244. doi:10.1002/eji.20194822531465113
  • AkcaliA, ZenginF, AksoySN, ZenginO. Fatigue in multiple Sclerosis: is it related to cytokines and hypothalamic-pituitary-adrenal axis?Mult Scler Relat Disord. 2017;15:37–41. doi:10.1016/j.msard.2017.03.00428641771
  • Dos SantosN, NovaesLS, DragunasG, et al. High dose of dexamethasone protects against EAE-induced motor deficits but impairs learning/memory in C57BL/6 mice. Sci Rep. 2019;9(1):6673. doi:10.1038/s41598-019-43217-331040362
  • WeiZ, WangM, HongM, et al. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res. 2016;8(4):1910–1918.27186315
  • LassmannH. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol. 2018;9:3116. doi:10.3389/fimmu.2018.0311630687321
  • ZhangY, YinL, ZhengN, et al. Icariin enhances remyelination process after acute demyelination induced by cuprizone exposure. Brain Res Bull. 2017;130:180–187. doi:10.1016/j.brainresbull.2017.01.02528161197
  • HanPF, CheXD, LiHZ, GaoYY, WeiXC, LiPC. Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin J Traumatol. 2020;23(2):96–101. doi:10.1016/j.cjtee.2020.02.00232201231
  • ColamatteoA, MaggioliE, Azevedo LoiolaR, et al. Reduced annexin A1 expression associates with disease severity and inflammation in multiple sclerosis patients. J Immunol. 2019;203(7):1753–1765. doi:10.4049/jimmunol.180168331462505
  • Rafiee ZadehA, FalahatianM, AlsahebfosoulF. Serum levels of histamine and diamine oxidase in multiple sclerosis. Am J Clin Exp Immunol. 2018;7(6):100–105.30697467
  • KaskowBJ, Baecher-AllanC. Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med. 2018;8(4):a029025. doi:10.1101/cshperspect.a02902529358315
  • ThangamEB, JemimaEA, SinghH, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the Hunt for new therapeutic targets. Front Immunol. 2018;9:1873. doi:10.3389/fimmu.2018.0187330150993
  • LiuZ, WangJ, HuangX, LiZ, LiuP. Deletion of sirtuin 6 accelerates endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice. Transl Res. 2016;172:18–29.e2. doi:10.1016/j.trsl.2016.02.00526924042
  • ChenM, WuJ, LuoQ, et al. The anticancer properties of herba epimedii and its main bioactive componentsicariin and Icariside II. Nutrients. 2016;8(9):Sep. doi:10.3390/nu8090563
  • LiuY, ZhangH, YanL, et al. MMP-2 and MMP-9 contribute to the angiogenic effect produced by hypoxia/15-HETE in pulmonary endothelial cells. J Mol Cell Cardiol. 2018;121:36–50. doi:10.1016/j.yjmcc.2018.06.00629913136
  • ZhangH, MaY, WangH, XuL, YuY. MMP-2 expression and correlation with pathology and MRI of glioma. Oncol Lett. 2019;17(2):1826–1832. doi:10.3892/ol.2018.980630675244
  • WangP, ZhangF, HeQ, et al. Flavonoid compound Icariin activates hypoxia inducible factor-1α in chondrocytes and promotes articular cartilage repair. PLoS One. 2016;11(2):e0148372–e0148372. doi:10.1371/journal.pone.014837226841115
  • WuX, KongW, QiX, et al. Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci. 2019;239:116879. doi:10.1016/j.lfs.2019.11687931682849
  • LiX, SunJ, HuS, LiuJ. Icariin induced B16 melanoma tumor cells apoptosis, suppressed tumor growth and metastasis. Iran J Public Health. 2014;43(6):847–848.26110157
  • SunZG, LangZF, MuYD, et al. Therapeutic effect and mechanism of icariin combined with calcium sensitive receptor on mouse gastric cancer cells. J Biol Regul Homeost Agents. 2020;34(5):1831–1836. doi:10.23812/20-228-l33164475
  • ShenR, WangJH. The effect of icariin on immunity and its potential application. Am J Clin Exp Immunol. 2018;7(3):50–56.30038846
  • YangL, WangY, GuoH, GuoM. Synergistic anti-cancer effects of icariin and temozolomide in glioblastoma. Cell Biochem Biophys. 2015;71(3):1379–1385. doi:10.1007/s12013-014-0360-325384619
  • MonteiroAR, HillR, PilkingtonGJ, MadureiraPA. The role of hypoxia in glioblastoma invasion. Cells. 2017;6(4):45. doi:10.3390/cells6040045
  • YangC, ZhengJ, XueY, et al. The effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 axis regulating glioblastoma angiogenesis. Front Mol Neurosci. 2017;10:437. doi:10.3389/fnmol.2017.0043729375300
  • GaoYF, ZhuT, MaoXY, et al. Silencing of Forkhead box D1 inhibits proliferation and migration in glioma cells. Oncol Rep. 2017;37(2):1196–1202. doi:10.3892/or.2017.534428075458
  • MaC, WeiF, XiaH, et al. MicroRNA-10b mediates TGF-β1-regulated glioblastoma proliferation, migration and epithelial-mesenchymal transition. Int J Oncol. 2017;50(5):1739–1748. doi:10.3892/ijo.2017.394728393237
  • XuB, JiangC, HanH, et al. Icaritin inhibits the invasion and epithelial-to-mesenchymal transition of glioblastoma cells by targeting EMMPRIN via PTEN/AKt/HIF-1α signalling. Clin Exp Pharmacol Physiol. 2015;42(12):1296–1307. doi:10.1111/1440-1681.1248826356761
  • ShiDB, LiXX, ZhengHT, et al. Icariin-mediated inhibition of NF-κB activity enhances the in vitro and in vivo antitumour effect of 5-fluorouracil in colorectal cancer. Cell Biochem Biophys. 2014;69(3):523–530. doi:10.1007/s12013-014-9827-524435883
  • TanHL, ChanKG, PusparajahP, LeeLH, GohBH. Gynura procumbens: an overview of the biological activities. Front Pharmacol. 2016;7:52. doi:10.3389/fphar.2016.0005227014066
  • TanHL, ChanKG, PusparajahP, et al. Anti-cancer properties of the naturally occurring aphrodisiacs: Icariin and its derivatives. Front Pharmacol. 2016;7:191. doi:10.3389/fphar.2016.0019127445824
  • ZhengCM, LiuXZ, LiQL, WangJF, TanZ, GeMH. [The bisphenol A-enhanced activity of thyroid carcinoma cell line B-CPAP is inhibited by Icarrin]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;52(6):458–462. (Chinese). doi:10.3760/cma.j.issn.1673-0860.2017.06.01228635220
  • LeiK, MaB, ShiP, et al. Icariin mitigates the growth and invasion ability of human oral squamous cell carcinoma via inhibiting toll-like receptor 4 and phosphorylation of NF-κB P65. Onco Targets Ther. 2020;13:299–307. doi:10.2147/ott.S21451432021276
  • GuoJ, QuH, ChenY, XiaJ. The role of RNA-binding protein tristetraprolin in cancer and immunity. Med Oncol. 2017;34(12):196. doi:10.1007/s12032-017-1055-629124478
  • ZhuHH, WangXT, SunYH, et al. Pim1 overexpression prevents apoptosis in cardiomyocytes after exposure to hypoxia and oxidative stress via upregulating cell autophagy. Cell Physiol Biochem. 2018;49(6):2138–2150. doi:10.1159/00049381730257237
  • ZhangH, LiP, LiJ, et al. Icariin induces apoptosis in acute promyelocytic leukemia by targeting PIM1. Pharmacol Rep. 2017;69(6):1270–1281. doi:10.1016/j.pharep.2017.06.00529128809
  • LiangP, ChaiY, ZhaoH, WangG. Predictive analyses of prognostic-related immune genes and immune infiltrates for glioblastoma. Diagnostics (Basel). 2020;10(3). doi:10.3390/diagnostics10030177
  • WangS, WangK, DengZ, et al. Correlation between the protein expression levels of A-kinase anchor protein95, p-retinoblastoma (Ser780), cyclin D2/3, and cyclin E2 in esophageal cancer tissues. Asia Pac J Clin Oncol. 2019;15(5):e162–e166. doi:10.1111/ajco.1314630990963
  • CayrolF, PraditsuktavornP, FernandoTM, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290. doi:10.1038/ncomms1429028134252
  • WangP, ZhangJ, XiongX, et al. Icariin suppresses cell cycle transition and cell migration in ovarian cancer cells. Oncol Rep. 2019;41(4):2321–2328. doi:10.3892/or.2019.698630720119
  • HatanpaaKJ, BurmaS, ZhaoD, HabibAA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12(9):675–684. doi:10.1593/neo.1068820824044
  • HuaW, ZhangY, WuX, et al. Icariin attenuates interleukin-1β-induced inflammatory response in human nucleus pulposus cells. Curr Pharm Des. 2018;23(39):6071–6078. doi:10.2174/138161282366617061511215828619001
  • AlgandabyMM, BreikaaRM, EidBG, NeamatallahTA, Abdel-NaimAB, AshourOM. Icariin protects against thioacetamide-induced liver fibrosis in rats: implication of anti-angiogenic and anti-autophagic properties. Pharmacol Rep. 2017;69(4):616–624. doi:10.1016/j.pharep.2017.02.01628505603
  • ShribmanS, ReidE, CrosbyAH, HouldenH, WarnerTT. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019;18(12):1136–1146. doi:10.1016/s1474-4422(19)30235-231377012
  • BoutryM, MoraisS, StevaninG. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep. 2019;19(4):18. doi:10.1007/s11910-019-0930-230820684
  • de SouzaPVS, de Rezende PintoWBV, de Rezende BatistellaGN, BortholinT, OliveiraASB. Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum. 2017;16(2):525–551. doi:10.1007/s12311-016-0803-z27271711
  • LiangH, MiaoH, YangH, et al. Dwarfism in Troyer syndrome: a family with SPG20 compound heterozygous mutations and a literature review. Ann N Y Acad Sci. 2020;1462(1):118–127. doi:10.1111/nyas.1422931535723
  • ZhouZ, WangW, XieX, SongY, DangC, ZhangH. Methylation-induced silencing of SPG20 facilitates gastric cancer cell proliferation by activating the EGFR/MAPK pathway. Biochem Biophys Res Commun. 2018;500(2):411–417. doi:10.1016/j.bbrc.2018.04.08929673586