384
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Silver Nanoparticle-Coated Ethyl Cellulose Inhibits Tumor Necrosis Factor-α of Breast Cancer Cells

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 2035-2046 | Published online: 13 May 2021

References

  • CruceriuD, BaldasiciO, BalacescuO, Berindan-NeagoeI. The dual role of tumor necrosis factor-alpha (TNF-alpha) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1–18. doi:10.1007/s13402-019-00489-131900901
  • AndersonGM, NakadaMT, DeWitteM. Tumor necrosis factor-alpha in the pathogenesis and treatment of cancer. Curr Opin Pharmacol. 2004;4(4):314–320. doi:10.1016/j.coph.2004.04.00415251122
  • MercoglianoMF, BruniS, ElizaldePV, SchillaciR. Tumor necrosis factor alpha blockade: an opportunity to tackle breast cancer. Front Oncol. 2020;10:584.32391269
  • ZhouXL, FanW, YangG, YuMX. The clinical significance of PR, ER, NF- kappa B, and TNF- alpha in breast cancer. Dis Markers. 2014;2014:494581. doi:10.1155/2014/49458124864130
  • O’RiordanKJ, HuangIC, PizziM, et al. Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors. J Neurosci. 2006;26(18):4870–4879. doi:10.1523/JNEUROSCI.4527-05.200616672661
  • WenliangT, LuoX, LiW, et al. TNF-alpha is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2019;40:446–456. doi:10.1016/j.ebiom.2018.12.04730594557
  • WuX, WuMY, JiangM, et al. TNF-alpha sensitizes chemotherapy and radiotherapy against breast cancer cells. Cancer Cell Int. 2017;17(1):13. doi:10.1186/s12935-017-0382-128127258
  • FehaidA, TaniguchiA. Silver nanoparticles reduce the apoptosis induced by tumor necrosis factor-alpha. Sci Technol Adv Mater. 2018;19(1):526–534. doi:10.1080/14686996.2018.148776130034561
  • ChughH, SoodD, ChandraI, TomarV, DhawanG, ChandraR. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1210–1220. doi:10.1080/21691401.2018.1449118
  • HuyTQ, HuyenPTM, LeAT, TonezzerM. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anticancer Agents Med Chem. 2020;20(11):1276–1287. doi:10.2174/187152061966619071012172731291881
  • MaiyoF, SinghM. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond). 2017;12(9):1075–1089. doi:10.2217/nnm-2017-002428440710
  • GurunathanS, ParkJH, HanJW, KimJH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine. 2015;10:4203–4222. doi:10.2147/IJN.S8395326170659
  • LiWR, XieXB, ShiQS, ZengHY, Ou-YangYS, ChenYB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115–1122. doi:10.1007/s00253-009-2159-519669753
  • AshaRaniPV, Low Kah MunG, HandeMP, ValiyaveettilS. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–290. doi:10.1021/nn800596w19236062
  • AsharaniP, SethuS, LimHK, BalajiG, ValiyaveettilS, HandeMP. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr. 2012;3(1):2. doi:10.1186/2041-9414-3-222321936
  • LinJ, HuangZ, WuH, et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014;10(11):2006–2020. doi:10.4161/auto.3629325484080
  • YangL, GaoY, LiuJ, et al. Silver-coated nanoparticles combined with doxorubicin for enhanced anticancer therapy. J Biomed Nanotechnol. 2018;14(2):312–320. doi:10.1166/jbn.2018.248131352927
  • CapanemaNSV, CarvalhoIC, MansurAAP, CarvalhoSM, LageAP, MansurHS. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells. ACS Appl Nano Mater. 2019;2(11):7393–7408. doi:10.1021/acsanm.9b01924
  • KumarS, MeenaVK, HazariPP, SharmaRK. PEG coated and doxorubicin loaded multimodal Gadolinium oxide nanoparticles for simultaneous drug delivery and imaging applications. Int J Pharm. 2017;527(1–2):142–150. doi:10.1016/j.ijpharm.2017.05.02728506803
  • VenkatesanJ, LeeJY, KangDS, et al. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol. 2017;98:515–525. doi:10.1016/j.ijbiomac.2017.01.12028147234
  • ParthasarathyA, VijayakumarS, MalaikozhundanB, et al. Chitosan-coated silver nanoparticles promoted antibacterial, antibiofilm, wound-healing of murine macrophages and antiproliferation of human breast cancer MCF 7 cells. Polym Test. 2020;90:106675. doi:10.1016/j.polymertesting.2020.106675
  • MuhammadZ, RazaA, GhafoorS, et al. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur J Pharm Sci. 2016;91:251–255. doi:10.1016/j.ejps.2016.04.02927132812
  • AziziM, GhourchianH, YazdianF, BagherifamS, BekhradniaS, NystromB. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017;7(1):5178. doi:10.1038/s41598-017-05461-328701707
  • PriyaK, VijayakumarM, JananiB. Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol. 2020;149:844–852. doi:10.1016/j.ijbiomac.2020.02.00732027896
  • FahrenholtzCD, SwannerJ, Ramirez-PerezM, SinghRN. Heterogeneous responses of ovarian cancer cells to silver nanoparticles as a single agent and in combination with cisplatin. J Nanomater. 2017;2017:5107485. doi:10.1155/2017/510748530034459
  • AbdellatifAAH, AlturkiHNH, TawfeekHM. Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Sci Rep. 2021;11(1):84. doi:10.1038/s41598-020-79834-633420131
  • KolarovaK, SamecD, KvitekO, ReznickovaA, RimpelovaS, SvorcikV. Preparation and characterization of silver nanoparticles in methyl cellulose matrix and their antibacterial activity. Jpn J Appl Phys. 2017;56(6S1):06GG09. doi:10.7567/JJAP.56.06GG09
  • SuwanT, KhongkhunthianS, OkonogiS. Silver nanoparticles fabricated by reducing property of cellulose derivatives. Drug Discov Ther. 2019;13(2):70–79. doi:10.5582/ddt.2019.0102131080206
  • ElbakryA, ZakyA, LieblR, RachelR, GoepferichA, BreunigM. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009;9(5):2059–2064. doi:10.1021/nl900386519331425
  • TawfeekHM, AbdellatifAAH, Abdel-AleemJA, HassanYA, FathallaD. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J Drug Deliv Sci Technol. 2020;56:101540. doi:10.1016/j.jddst.2020.101540
  • SunQ, CaiX, LiJ, ZhengM, ChenZ, YuC-P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf a Physicochem Eng Asp. 2014;444:226–231. doi:10.1016/j.colsurfa.2013.12.065
  • FortunatiE, LatteriniL, RinaldiS, KennyJM, ArmentanoI. PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. J Mater Sci Mater Med. 2011;22(12):2735–2744. doi:10.1007/s10856-011-4450-022002470
  • OnukiY, MachidaY, YokawaT, SeikeC, SakuraiS, TakayamaK. Magnetic resonance imaging study on the physical stability of menthol and diphenhydramine cream for the treatment of chronic kidney disease-associated pruritus. Chem Pharm Bull (Tokyo). 2015;63(6):457–462. doi:10.1248/cpb.c15-0019226027471
  • AbdellatifAAH, RasheedZ, AlhowailAH, et al. Silver citrate nanoparticles inhibit PMA-induced TNFalpha expression via deactivation of NF-kappaB activity in human cancer cell-lines, MCF-7. Int J Nanomedicine. 2020;15:8479–8493. doi:10.2147/IJN.S27409833154638
  • RasheedZ, RasheedN, Al-ShayaO. Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1beta-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5. Eur J Nutr. 2018;57(3):917–928. doi:10.1007/s00394-016-1375-x28110479
  • AbdellatifAAH, IbrahimMA, AminMA, et al. Cetuximab conjugated with octreotide and entrapped calcium alginate-beads for targeting somatostatin receptors. Sci Rep. 2020;10(1):4736. doi:10.1038/s41598-020-61605-y32170176
  • PfafflMW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi:10.1093/nar/29.9.e4511328886
  • OngHX, TrainiD, CipollaD, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res. 2012;29(12):3335–3346. doi:10.1007/s11095-012-0827-022833052
  • Said-ElbahrR, NasrM, AlhnanMA, TahaI, SammourO. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur J Pharm Biopharm. 2016;103:1–12. doi:10.1016/j.ejpb.2016.03.02527020529
  • XuY, LiS, YueX, LuW. Review of silver nanoparticles (AgNPs)-cellulose antibacterial composites. BioResources. 2018;13(1):2150–2170.
  • HebeishAA, El-RafieMH, Abdel-MohdyFA, Abdel-HalimES, EmamHE. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym. 2010;82(3):933–941. doi:10.1016/j.carbpol.2010.06.020
  • GoiaDV. Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem. 2004;14(4):451–458. doi:10.1039/b311076a
  • HajjiS, SalemRB, HamdiM, et al. Nanocomposite films based on chitosan–poly(vinyl alcohol) and silver nanoparticles with high antibacterial and antioxidant activities. Process Saf Environ Protect. 2017;111:112–121. doi:10.1016/j.psep.2017.06.018
  • ZielińskaA, SkwarekE, ZaleskaA, GazdaM, HupkaJ. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009;1(2):1560–1566. doi:10.1016/j.proche.2009.11.004
  • PalS, TakYK, SongJM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi:10.1128/AEM.02218-0617261510
  • LiuH, WangD, SongZ, ShangS. Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose. 2010;18(1):67–74. doi:10.1007/s10570-010-9464-0
  • DuarteAR, GordilloMD, CardosoMM, SimplicioAL, DuarteCM. Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation. Int J Pharm. 2006;311(1–2):50–54. doi:10.1016/j.ijpharm.2005.12.01016423476
  • RautNS, SomvanshiS, JumdeAB, KhandelwalHM, UmekarMJ, KotagaleNR. Ethyl cellulose and hydroxypropyl methyl cellulose buoyant microspheres of metoprolol succinate: influence of pH modifiers. Int J Pharm Investig. 2013;3(3):163–170. doi:10.4103/2230-973X.119235
  • FengJ, ShiQ, LiW, et al. Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose. 2014;21(6):4557–4567. doi:10.1007/s10570-014-0449-2
  • YingyingX, WangL, BaiR, ZhangT, ChenC. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale. 2015;7(38):16100–16109. doi:10.1039/C5NR04200C26372376
  • KedzioraA, SperudaM, KrzyzewskaE, RybkaJ, LukowiakA, Bugla-PloskonskaG. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci. 2018;19(2):444. doi:10.3390/ijms19020444
  • MtibeA, MokhothuTH, JohnMJ, MokhenaTC, MochaneMJ. Fabrication and characterization of various engineered nanomaterials. In: Handbook of Nanomaterials for Industrial Applications. 2018:151–171.
  • De MatteisV, RizzelloL, IngrossoC, et al. Cultivar-dependent anticancer and antibacterial properties of silver nanoparticles synthesized using leaves of different olea europaea trees. Nanomaterials (Basel). 2019;9(11):1544. doi:10.3390/nano9111544
  • AlkhulaifiMM, AlshehriJH, AlwehaibiMA, et al. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi J Biol Sci. 2020;27(12):3434–3441. doi:10.1016/j.sjbs.2020.09.03133304153
  • Esquivel-VelazquezM, Ostoa-SalomaP, Palacios-ArreolaMI, Nava-CastroKE, CastroJI, Morales-MontorJ. The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res. 2015;35(1):1–16. doi:10.1089/jir.2014.002625068787
  • LiuW, LuX, ShiP, et al. TNF-alpha increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-kappaB pathway. Sci Rep. 2020;10(1):1804. doi:10.1038/s41598-020-58642-y32019974
  • Martinez-RezaI, DiazL, Garcia-BecerraR. Preclinical and clinical aspects of TNF-alpha and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci. 2017;24(1):90. doi:10.1186/s12929-017-0398-929202842
  • ChenX, SchluesenerHJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–12. doi:10.1016/j.toxlet.2007.10.00418022772
  • UllahI, KhalilAT, AliM, et al. Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxid Med Cell Longev. 2020;2020:1215395. doi:10.1155/2020/121539533082906
  • MugadeM, PatoleM, PokharkarV. Bioengineered mannan sulphate capped silver nanoparticles for accelerated and targeted wound healing: physicochemical and biological investigations. Biomed Pharmacother. 2017;91:95–110. doi:10.1016/j.biopha.2017.04.01728448875
  • WongKK, CheungSO, HuangL, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem. 2009;4(7):1129–1135. doi:10.1002/cmdc.20090004919405063
  • LiuX, HaoW, LokCN, WangYC, ZhangR, WongKK. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J Pediatr Surg. 2014;49(12):1846–1851. doi:10.1016/j.jpedsurg.2014.09.03325487498
  • FehaidA, TaniguchiA. Size-dependent effect of silver nanoparticles on the tumor necrosis factor alpha-induced DNA damage response. Int J Mol Sci. 2019;20(5):1038. doi:10.3390/ijms20051038
  • KulandaiveluB, GothandamKM. Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Braz Arch Biol Technol. 2016;59:e16150529. doi:10.1590/1678-4324-2016150529
  • HussainSM, HessKL, GearhartJM, GeissKT, SchlagerJJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro. 2005;19(7):975–983. doi:10.1016/j.tiv.2005.06.03416125895