332
Views
8
CrossRef citations to date
0
Altmetric
Review

Nanoscale Formulations: Incorporating Curcumin into Combination Strategies for the Treatment of Lung Cancer

, , , , ORCID Icon &
Pages 2695-2709 | Published online: 21 Jun 2021

References

  • BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • American Cancer Society. Cancer Facts & Figures 2015. American Cancer Society; 2015.
  • VansteenkisteJ, CrinòL, DoomsC, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014;25(8):1462–1474. doi:10.1093/annonc/mdu08924562446
  • TsaoAS, ScagliottiGV, BunnPA, et al. Scientific advances in lung cancer 2015. J Thorac Oncol. 2016;11(5):613–638. doi:10.1016/j.jtho.2016.03.01227013409
  • GettingerSN, HornL, GandhiL, et al. Overall survival and long-term safety of nivolumab (anti–programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non–small-cell lung cancer. J Clin Oncol. 2015;33(18):2004. doi:10.1200/JCO.2014.58.370825897158
  • AmmonHP, WahlMA. Pharmacology of Curcuma longa. Planta Medica. 1991;57(1):1–7. doi:10.1055/s-2006-9600042062949
  • LelliD, SahebkarA, JohnstonTP, PedoneC. Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res. 2017;115:133–148. doi:10.1016/j.phrs.2016.11.01727888157
  • CohnL, EliasJA, ChuppGL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol. 2004;22:789–815. doi:10.1146/annurev.immunol.22.012703.10471615032597
  • XuF, DiaoR, LiuJ, KangY, WangX, ShiL. Curcumin attenuates staphylococcus aureus‐induced acute lung injury. Clin Respir J. 2015;9(1):87–97. doi:10.1111/crj.1211324460792
  • DurgaprasadS, PaiCG, AlvresJF. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res. 2005;122(4):315.16394323
  • ShehzadA, LeeYS. Molecular mechanisms of curcumin action: signal transduction. Biofactors. 2013;39(1):27–36. doi:10.1002/biof.106523303697
  • LelliD, PedoneC, MajeedM, SahebkarA. Curcumin and lung cancer: the role of microRNAs. Current Pharmaceutical Design. 2017;23(23):3440–3444. doi:10.2174/138161282366617010914481828067164
  • MehtaHJ, PatelV, SadikotRT. Curcumin and lung cancer—a review. Target Oncol. 2014;9(4):295–310. doi:10.1007/s11523-014-0321-124840628
  • LuthraPM, LalN. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur J Med Chem. 2016;109:23–35. doi:10.1016/j.ejmech.2015.11.04926748069
  • FengT, WeiY, LeeRJ, ZhaoL. Liposomal curcumin and its application in cancer. Int J Nanomedicine. 2017;12:6027. doi:10.2147/IJN.S13243428860764
  • LaoCD, RuffinMT, NormolleD, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):1–4. doi:10.1186/1472-6882-6-1016412227
  • NoureddinSA, El-ShishtawyRM, Al-FootyKO. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem. 2019;182:111631. doi:10.1016/j.ejmech.2019.11163131479974
  • GolombekSK, MayJN, TheekB, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38. doi:10.1016/j.addr.2018.07.00730009886
  • ZhangB, HuY, PangZ. Modulating the tumor microenvironment to enhance tumor nanomedicine delivery. Front Pharmacol. 2017;8:952. doi:10.3389/fphar.2017.0095229311946
  • ChauhanVP, StylianopoulosT, MartinJD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7(6):383. doi:10.1038/nnano.2012.4522484912
  • ZhaoM, van StratenD, BroekmanML, PréatV, SchiffelersRM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355. doi:10.7150/thno.3814731938069
  • WangJ, WangX, WangX, et al. Curcumin inhibits the growth via Wnt/beta-catenin pathway in non-small-cell lung cancer cells. Eur Rev Med Pharmacol Sci. 2018;22(21):7492–7499. doi:10.26355/eurrev_201811_1629030468498
  • LiF, ChenX, XuB, ZhouH. Curcumin induces p53-independent necrosis in H1299 cells via a mitochondria-associated pathway. Mol Med Rep. 2015;12(5):7806–7814. doi:10.3892/mmr.2015.439526460892
  • ShehzadA, LeeJ, HuhTL, LeeYS. Curcumin induces apoptosis in human colorectal carcinoma (HCT-15) cells by regulating expression of Prp4 and p53. Mol Cells. 2013;35(6):526–532. doi:10.1007/s10059-013-0038-523686430
  • Lev-AriS, StarrA, KatzburgS, et al. Curcumin induces apoptosis and inhibits growth of orthotopic human non-small cell lung cancer xenografts. J Nutr Biochem. 2014;25(8):843–850. doi:10.1016/j.jnutbio.2014.03.01424835302
  • YeM, ZhangJ, ZhangJ, MiaoQ, YaoL, ZhangJ. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett. 2015;357(1):196–205. doi:10.1016/j.canlet.2014.11.02825444916
  • EndoH, InoueI, MasunakaK, TanakaM, YanoM. Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci Biotechnol Biochem. 2020;84(12):2440–2447. doi:10.1080/09168451.2020.180844332841581
  • ZhouGZ, LiAF, SunYH, SunGC. A novel synthetic curcumin derivative MHMM-41 induces ROS-mediated apoptosis and migration blocking of human lung cancer cells A549. Biomed Pharmacother. 2018;103:391–398. doi:10.1016/j.biopha.2018.04.08629674274
  • JinH, QiaoF, WangY, XuY, ShangY. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep. 2015;34(5):2782–2789. doi:10.3892/or.2015.425826351877
  • XuX, ZhuY. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway. Am J Transl Res. 2017;9(8):3633.28861154
  • PongrakhananonV, NimmannitU, LuanpitpongS, RojanasakulY, ChanvorachoteP. Curcumin sensitizes non-small cell lung cancer cell anoikis through reactive oxygen species-mediated Bcl-2 downregulation. Apoptosis. 2010;15(5):574–585. doi:10.1007/s10495-010-0461-420127174
  • ChiangI, WangWS, LiuHC, YangST, TangNY, ChungJG. Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro. Oncol Rep. 2015;34(4):1853–1874. doi:10.3892/or.2015.415926238775
  • ShenS, KeppO, KroemerG. The end of autophagic cell death? Autophagy. 2012;8:1–3. doi:10.4161/auto.8.1.1661822082964
  • XiaoK, JiangJ, GuanC, et al. Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells. J Pharmacol Sci. 2013;123:13085FP. doi:10.1254/jphs.13085fp
  • LeeM, KimKS, FukushiA, KimDH, KimCH, LeeYC. Transcriptional activation of human GD3 synthase (hST8Sia I) gene in curcumin-induced autophagy in A549 human lung carcinoma cells. Int J Mol Sci. 2018;19(7):1943. doi:10.3390/ijms19071943
  • KlionskyDJ, AbdelmohsenK, AbeA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2016;12(1):1–222.26799652
  • ChenHW, LeeJY, HuangJY, et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res. 2008;68(18):7428–7438. doi:10.1158/0008-5472.CAN-07-673418794131
  • LuY, WeiC, XiZ. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell Dev Biol Anim. 2014;50(9):840–850. doi:10.1007/s11626-014-9779-524938356
  • ChenQY, JiaoDM, YaoQH, et al. Expression analysis of Cdc42 in lung cancer and modulation of its expression by curcumin in lung cancer cell lines. Int J Oncol. 2012;40(5):1561–1568. doi:10.3892/ijo.2012.133622266952
  • ZuckerS, VacircaJ. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):101–117. doi:10.1023/A:102586713043715000152
  • ChenQY, ZhengY, JiaoDM, et al. Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. J Nutr Biochem. 2014;25(2):177–185. doi:10.1016/j.jnutbio.2013.10.00424445042
  • FanZ, DuanX, CaiH, et al. Curcumin inhibits the invasion of lung cancer cells by modulating the PKCα/Nox-2/ROS/ATF-2/MMP-9 signaling pathway. Oncol Rep. 2015;34(2):691–698. doi:10.3892/or.2015.404426059056
  • LinSS, LaiKC, HsuSC, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and-9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009;285(2):127–133. doi:10.1016/j.canlet.2009.04.03719477063
  • TsaiJR, LiuPL, ChenYH, et al. Curcumin inhibits non-small cell lung cancer cells metastasis through the adiponectin/NF-κb/MMPs signaling pathway. PLoS One. 2015;10(12):e0144462. doi:10.1371/journal.pone.014446226656720
  • ZhanJ, JiaoD, WangY, et al. Integrated micro RNA and gene expression profiling reveals the crucial mi RNA s in curcumin anti‐lung cancer cell invasion. Thorac Cancer. 2017;8(5):461–470. doi:10.1111/1759-7714.1246728660665
  • WangN, FengT, LiuX, LiuQ. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta pharmaceutica. 2020;70(3):399–409. doi:10.2478/acph-2020-002932074070
  • ZhangX, ZhangC, RenZ, et al. Curcumin affects gastric cancer cell migration, invasion and cytoskeletal remodeling through Gli1-β-catenin. Cancer Manag Res. 2020;12:3795–3806. doi:10.2147/CMAR.S24438432547215
  • SalehiM, MovahedpourA, TayaraniA, et al. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother Res. 2020;34(10):2557–2576. doi:10.1002/ptr.670432307773
  • JiaoD, WangJ, LuW, et al. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolytics. 2016;3:16018. doi:10.1038/mto.2016.1827525306
  • YanL. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice. Int J Cancer. 2013;132(2):269–275. doi:10.1002/ijc.2768322729592
  • ReckM, PopatS, ReinmuthN, De RuysscherD, KerrK, PetersS. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(suppl_3):iii27–iii39.25115305
  • GiacconeG, SplinterTA, DebruyneC, et al. Randomized study of paclitaxel-cisplatin versus cisplatin-teniposide in patients with advanced non-small-cell lung cancer. The European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. J Clin Oncol. 1998;16(6):2133–2141. doi:10.1200/JCO.1998.16.6.21339626213
  • LinJJ, ShawAT. Resisting resistance: targeted therapies in lung cancer. Trends Cancer. 2016;2(7):350–364. doi:10.1016/j.trecan.2016.05.01027819059
  • ZhangJ, ZhangT, TiX, et al. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 2010;399(1):1–6. doi:10.1016/j.bbrc.2010.07.01320627087
  • KimKC, BaekSH, LeeC. Curcumin-induced downregulation of Axl receptor tyrosine kinase inhibits cell proliferation and circumvents chemoresistance in non-small lung cancer cells. Int J Oncol. 2015;47(6):2296–2303. doi:10.3892/ijo.2015.321626498137
  • ChenP, HuangH-P, WangY, et al. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J Exp Clin Cancer Res. 2019;38(1):254. doi:10.1186/s13046-019-1234-831196210
  • HanahanD, WeinbergRA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.01321376230
  • PragerBC, XieQ, BaoS, RichJN. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell. 2019;24(1):41–53. doi:10.1016/j.stem.2018.12.00930609398
  • YenH-Y, TsaoC-W, LinY-W, Kuo-C-C, TsaoC-H, LiuC-Y. Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep. 2019;9(1):1–14. doi:10.1038/s41598-019-53509-330626917
  • MirzaS, VasaiyaA, VoraH, JainN, RawalR. Curcumin targets circulating cancer stem cells by inhibiting self-renewal efficacy in non-small cell lung carcinoma. Curr Med Chem Anticancer Agents. 2016;17(6):859.
  • PuliyappadambaVT, ThulasidasanAKT, VijayakurupV, AntonyJ, AntoRJ. Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis. Biofactors. 2015;41(6):431–442. doi:10.1002/biof.124426643788
  • MoghaddamSJ, BartaP, MirabolfathinejadSG, et al. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis. 2009;30(11):1949–1956. doi:10.1093/carcin/bgp22919793800
  • ZhouS, LiJ, XuH, et al. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene. 2017;622:1–12. doi:10.1016/j.gene.2017.04.02628431975
  • S DarveshA, B AggarwalB, BishayeeA. Curcumin and liver cancer: a review. Curr Pharm Biotechnol. 2012;13(1):218–228. doi:10.2174/13892011279886879121466422
  • ZhangT, ChenY, GeY, HuY, LiM, JinY. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharmaceutica Sinica B. 2018;8(3):440–448. doi:10.1016/j.apsb.2018.03.00429881683
  • ZhuWT, LiuSY, WuL, et al. Delivery of curcumin by directed self-assembled micelles enhances therapeutic treatment of non-small-cell lung cancer. Int J Nanomedicine. 2017;12:2621. doi:10.2147/IJN.S12892128435247
  • WeiX, DuZY, CuiXX, et al. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells. Oncol Lett. 2012;4(2):279–284. doi:10.3892/ol.2012.71022844370
  • HeK, TangM. Safety of novel liposomal drugs for cancer treatment: advances and prospects. Chem Biol Interact. 2018;295:13–19. doi:10.1016/j.cbi.2017.09.00628919304
  • LiuY, GaoD, ZhangX, et al. Antitumor drug effect of betulinic acid mediated by polyethylene glycol modified liposomes. Mater Sci Eng C. 2016;64:124–132. doi:10.1016/j.msec.2016.03.080
  • GuoXX, HeW, ZhangXJ, HuXM. Cytotoxicity of cationic liposomes coated by N‐trimethyl chitosan and their in vivo tumor angiogenesis targeting containing doxorubicin. J Appl Polym Sci. 2013;128(1):21–27. doi:10.1002/app.37701
  • PandeyH, RaniR, AgarwalV. Liposome and their applications in cancer therapy. Brazilian Arch Biol Technol. 2016;59. doi:10.1590/1678-4324-2016150477
  • MarzbaliMY, KhosroushahiAY. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol. 2017;79(4):637–649. doi:10.1007/s00280-017-3273-128314988
  • PatilS, ChoudharyB, RathoreA, RoyK, MahadikK. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22(12):1103–1111. doi:10.1016/j.phymed.2015.08.00626547533
  • SonKH, HongJH, LeeJW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine. 2016;11:5163. doi:10.2147/IJN.S11266027785021
  • SinghN, SachdevA, GopinathP. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J Nanosci Nanotechnol. 2018;18(3):1534–1541. doi:10.1166/jnn.2018.1422229448627
  • FiegelV, HarleppS, Begin‐ColinS, BeginD, MertzD. Design of protein‐coated carbon nanotubes loaded with hydrophobic drugs through sacrificial templating of mesoporous silica shells. Chem Eur J. 2018;24(18):4662–4670. doi:10.1002/chem.20170584529369435
  • LiH, ZhangN, HaoY, et al. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv. 2014;21(5):379–387. doi:10.3109/10717544.2013.84824624160816
  • GanesanP, RamalingamP, KarthivashanG, KoYT, ChoiD-K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomed. 2018;13:1569. doi:10.2147/IJN.S155593
  • BaekJS, ChoCW. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget. 2017;8(18):30369. doi:10.18632/oncotarget.1615328423731
  • GuorguiJ, WangR, MattheolabakisG, MackenzieGG. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch Biochem Biophys. 2018;648:12–19. doi:10.1016/j.abb.2018.04.01229679536
  • WangP, ZhangL, PengH, LiY, XiongJ, XuZ. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C. 2013;33(8):4802–4808. doi:10.1016/j.msec.2013.07.047
  • WangL, DuJ, ZhouY, WangY. Safety of nanosuspensions in drug delivery. Nanomedicine. 2017;13(2):455–469. doi:10.1016/j.nano.2016.08.00727558350
  • HongJ, LiuY, XiaoY, et al. High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: in vitro and in vivo evaluation. Drug Deliv. 2017;24(1):109–120. doi:10.1080/10717544.2016.123358928155567
  • AdityaN, YangH, KimS, KoS. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids Surf B Biointerfaces. 2015;127:114–121. doi:10.1016/j.colsurfb.2015.01.02725660094
  • WangY, WangC, ZhaoJ, DingY, LiL. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J Colloid Interface Sci. 2017;485:91–98. doi:10.1016/j.jcis.2016.09.00327657837
  • SinghY, MeherJG, RavalK, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49. doi:10.1016/j.jconrel.2017.03.00828279798
  • WanK, SunL, HuX, et al. Novel nanoemulsion based lipid nanosystems for favorable in vitro and in vivo characteristics of curcumin. Int J Pharm. 2016;504(1–2):80–88. doi:10.1016/j.ijpharm.2016.03.05527034002
  • ChangH-B, ChenB-H. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. Int J Nanomedicine. 2015;10:5059. doi:10.2147/IJN.S8722526345201
  • BaghbaniF, MoztarzadehF. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces. 2017;153:132–140. doi:10.1016/j.colsurfb.2017.01.05128235723
  • GuerreroS, Inostroza-RiquelmeM, Contreras-OrellanaP, et al. Curcumin-loaded nanoemulsion: a new safe and effective formulation to prevent tumor reincidence and metastasis. Nanoscale. 2018;10(47):22612–22622. doi:10.1039/C8NR06173D30484463
  • MaroteA, TeixeiraFG, Mendes-PinheiroB, SalgadoAJ. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol. 2016;7:231. doi:10.3389/fphar.2016.0023127536241
  • ChengL, ZhangK, WuS, CuiM, XuT. Focus on mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy focus on mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy. Focus. 2021.
  • AqilF, MunagalaR, JeyabalanJ, AgrawalAK, GuptaR. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J. 2017;19(6):1691–1702. doi:10.1208/s12248-017-0154-929047044
  • Dance-BarnesST, KockND, MooreJE, et al. Lung tumor promotion by curcumin. Carcinogenesis. 2009;30(6):1016–1023. doi:10.1093/carcin/bgp08219359593
  • SuCC, YangJS, LuCC, et al. Curcumin inhibits human lung large cell carcinoma cancer tumour growth in a murine xenograft model. Phytother Res. 2010;24(2):189–192. doi:10.1002/ptr.290520077433
  • TungCL, JianYJ, ChenJC, et al. Curcumin downregulates p38 MAPK-dependent X-ray repair cross-complement group 1 (XRCC1) expression to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(6):657–666. doi:10.1007/s00210-016-1235-527026405
  • ZhangW, ShiH, ChenC, et al. Curcumin enhances cisplatin sensitivity of human NSCLC cell lines through influencing Cu-Sp1-CTR1 regulatory loop. Phytomedicine. 2018;48:51–61. doi:10.1016/j.phymed.2018.04.05830195880
  • BaharuddinP, SatarN, FakiruddinKS, et al. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines. Oncol Rep. 2016;35(1):13–25. doi:10.3892/or.2015.437126531053
  • KangJH, KangHS, KimIK, et al. Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp Biol Med. 2015;240(11):1416–1425. doi:10.1177/1535370215571881
  • YinH, GuoR, XuY, et al. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer. Acta Biochim Biophys Sin. 2012;44(2):147–153. doi:10.1093/abbs/gmr10622126905
  • SaghatelyanT, TananyanA, JanoyanN, et al. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: a comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine. 2020;70:153218. doi:10.1016/j.phymed.2020.15321832335356
  • KoJC, TsaiMS, WengSH, KuoYH, ChiuYF, LinYW. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2–ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells. Toxicol Appl Pharmacol. 2011;255(3):327–338. doi:10.1016/j.taap.2011.07.01221810436
  • ChenH, ChenL, WangL, et al. Synergistic effect of fenretinide and curcumin for treatment of non-small cell lung cancer. Cancer Biology & Therapy. 2016;17(10):1022–1029. doi:10.1080/15384047.2016.121981027628049
  • ManS, ZhangL, CuiJ, YangL, MaL, GaoW. Curcumin enhances the anti‐cancer effects of Paris Saponin II in lung cancer cells. Cell Proliferation. 2018;51(4):e12458. doi:10.1111/cpr.1245829608021
  • ZhouDH, WangX, YangM, ShiX, HuangW, FengQ. Combination of low concentration of (−)-epigallocatechin gallate (EGCG) and curcumin strongly suppresses the growth of non-small cell lung cancer in vitro and in vivo through causing cell cycle arrest. Int J Mol Sci. 2013;14(6):12023–12036. doi:10.3390/ijms14061202323739680
  • HirschFR, ScagliottiGV, MulshineJL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311. doi:10.1016/S0140-6736(16)30958-827574741
  • ByersLA, DiaoL, WangJ, et al. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1):279–290. doi:10.1158/1078-0432.CCR-12-155823091115
  • YamauchiY, IzumiY, YamamotoJ, NomoriH. Coadministration of erlotinib and curcumin augmentatively reduces cell viability in lung cancer cells. Phytother Res. 2014;28(5):728–735. doi:10.1002/ptr.505623943298
  • LinHP, KuoLK, ChuuCP. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non‐small‐cell lung cancer cells. Phytother Res. 2012;26(1):122–126. doi:10.1002/ptr.352321567511
  • HuQ, SunW, WangC, GuZ. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34. doi:10.1016/j.addr.2015.10.02226546751
  • WangBL, ShenYM, ZhangQW, et al. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomedicine. 2013;8:3521.24101869
  • LeeWH, LooCY, TrainiD, YoungPM. Development and evaluation of paclitaxel and curcumin dry powder for inhalation lung cancer treatment. Pharmaceutics. 2020;13(1):9. doi:10.3390/pharmaceutics13010009
  • JiangK, ShenM, XuW. Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. Int J Nanomedicine. 2018;13:2561. doi:10.2147/IJN.S15774629731631
  • RudnikLAC, FaragoPV, Manfron BudelJ, et al. Co-loaded curcumin and methotrexate nanocapsules enhance cytotoxicity against non-small-cell lung cancer cells. Molecules. 2020;25(8):1913. doi:10.3390/molecules25081913
  • HongY, CheS, HuiB, WangX, ZhangX, MaH. Combination therapy of lung cancer using layer-by-layer cisplatin prodrug and curcumin co-encapsulated nanomedicine. Drug Des Devel Ther. 2020;14:2263–2274. doi:10.2147/DDDT.S241291
  • JyotiK, PandeyRS, KushP, KaushikD, JainUK, MadanJ. Inhalable bioresponsive chitosan microspheres of doxorubicin and soluble curcumin augmented drug delivery in lung cancer cells. Int J Biol Macromol. 2017;98:50–58. doi:10.1016/j.ijbiomac.2017.01.10928130133
  • HuangZ, ZhouL, ChenZ, NiceEC, HuangC. Stress management by autophagy: implications for chemoresistance. Int J Cancer. 2016;139(1):23–32. doi:10.1002/ijc.2999026757106
  • NishiguchiY, OueN, Fujiwara-TaniR, et al. Role of metastasis-related genes in cisplatin chemoresistance in gastric cancer. Int J Mol Sci. 2020;21(1):254. doi:10.3390/ijms21010254
  • JiaJ, ZhuF, MaX, CaoZW, LiYX, ChenYZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8(2):111–128.19180105
  • NohJ, KwonB, HanE, et al. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat Commun. 2015;6(1):1–9. doi:10.1038/ncomms7907
  • BozicI, ReiterJG, AllenB, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. elife. 2013;2:e00747. doi:10.7554/eLife.0074723805382
  • SetyawatiMI, TayCY, DocterD, StauberRH, LeongDT. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev. 2015;44(22):8174–8199. doi:10.1039/C5CS00499C26239875
  • RajaniC, BorisaP, KaranwadT, et al. Cancer-targeted chemotherapy: emerging role of the folate anchored dendrimer as drug delivery nanocarrier. In: Pharmaceutical Applications of Dendrimers. Elsevier; 2020:151–198.
  • LiuC, CuiZ, ZhangX, MaoS. Nanobiomaterials in drug delivery: designing strategies and critical concepts for their potential clinical applications. In: Nanobiomaterial Engineering. Springer; 2020:253–274.