278
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Prospective Application of Two New Pyridine-Based Zinc (II) Amide Carboxylate in Management of Alzheimer’s Disease: Synthesis, Characterization, Computational and in vitro Approaches

, ORCID Icon, , , ORCID Icon, , , , , , ORCID Icon & show all
Pages 2679-2694 | Published online: 21 Jun 2021

References

  • Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13(4):325–373.
  • ShahSMM, SadiqA, ShahSMH, et al. Antioxidant, total phenolic contents and antinociceptive potential of Teucrium stocksianum methanolic extract in different animal models. BMC Complement Altern Med. 2014;14(1):1–7. doi:10.1186/1472-6882-14-18124383621
  • TanoliST, RamzanM, HassanA, et al. Design, synthesis and bioevaluation of tricyclic fused ring system as dual binding site acetylcholinesterase inhibitors. Bioorg Chem. 2019;83:336–347. doi:10.1016/j.bioorg.2018.10.03530399465
  • GhaiR, NagarajanK, AroraM, GroverP, AliN, KapoorG. Current strategies and novel drug approaches for Alzheimer disease. CNS Neurol Disord Drug Targets. 2020.
  • SarfrazM, SultanaN, RashidU, et al. Synthesis, biological evaluation and docking studies of 2, 3-dihydroquinazolin-4 (1H)-one derivatives as inhibitors of cholinesterases. Bioorg Chem. 2017;70:237–244. doi:10.1016/j.bioorg.2017.01.00428126287
  • AhmadS, IftikharF, UllahF, et al. Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorg Chem. 2016;69:91–101. doi:10.1016/j.bioorg.2016.10.00227750058
  • TanakaT, KazuiH, MoriharaT, et al. Post‐marketing survey of donepezil hydrochloride in Japanese patients with Alzheimer’s disease with behavioral and psychological symptoms of dementia (BPSD). Psychogeriatrics. 2008;8(3):114–123. doi:10.1111/j.1479-8301.2008.00250.x
  • CarrolDH, ChassagneF, DettweilerM, QuaveCL. Antibacterial activity of plant species used for oral health against Porphyromonas gingivalis. PLoS One. 2020;15(10):e0239316. doi:10.1371/journal.pone.023931633031410
  • AguayoS, SchuhCMAP, VicenteB, et al. Association between Alzheimer’s disease and oral and gut microbiota: are pore forming proteins the missing link? J Alzheimers Dis. 2018;65(1):29–46. doi:10.3233/JAD-18031930040725
  • SadiqA, MahmoodF, UllahF, et al. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem Cent J. 2015;9(1):1–9. doi:10.1186/s13065-015-0107-225649693
  • MarkowitzJS, GuttermanEM, SadikK, et al. Health-related quality of life for caregivers of patients with Alzheimer disease. Alzheimer Dis Assoc Disord. 2003;17(4):209–214. doi:10.1097/00002093-200310000-0000314657784
  • AminMJ, MianaGA, RashidU, et al. SAR based in-vitro anticholinesterase and molecular docking studies of nitrogenous progesterone derivatives. Steroids. 2020;158:108599. doi:10.1016/j.steroids.2020.10859932126219
  • WestMJ, ColemanPD, FloodDG, et al. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet. 1994;344(8925):769–772. doi:10.1016/S0140-6736(94)92338-87916070
  • JanMS, AhmadS, HussainF, et al. Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2, 5-dione derivatives as multitarget anti-inflammatory agents. Eur J Med Chem. 2020;186:111863. doi:10.1016/j.ejmech.2019.11186331740050
  • UddinMN, AfrinR, UddinMJ, et al. Vanda roxburghii chloroform extract as a potential source of polyphenols with antioxidant and cholinesterase inhibitory activities: identification of a strong phenolic antioxidant. BMC Complement Altern Med. 2015;15(1):1–9. doi:10.1186/s12906-015-0728-y25617057
  • StampsJJ, BartoshukLM, HeilmanKM. A brief olfactory test for Alzheimer’s disease. J Neurol Sci. 2013;333(1–2):19–24. doi:10.1016/j.jns.2013.06.03323927938
  • KawasC, CorradaMM, BrookmeyerR, et al. Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology. 2003;60(7):1089–1093. doi:10.1212/01.WNL.0000055813.36504.BF12682311
  • AhmadS, MahnashiMH, AlyamiBA, et al. Synthesis of michael adducts as key building blocks for potential analgesic drugs: in vitro, in vivo and in silico explorations. Drug Design Devel Ther. 2021;15:1299. doi:10.2147/DDDT.S292826
  • LimKY, RyanEA, WongPK, et al. Studies on the pathology, especially brain hemorrhage and angioendotheliomas, induced by two new mos-containing viruses. J Neurovirol. 2000;6(2):106–120. doi:10.3109/1355028000901315410822324
  • MahnashiMH, AlyamiBA, AlqahtaniYS, et al. Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria digitata Lindl.: molecular docking based synergistic effect of the identified compounds. J Ethnopharmacol. 2021;273:113976. doi:10.1016/j.jep.2021.11397633647424
  • ZafarR, UllahH, ZahoorM, et al. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complement Altern Med. 2019;19(1):1–13. doi:10.1186/s12906-019-2679-130606178
  • SiddiquiTG, WhitfieldT, PraharajuSJ, et al. Magnetic resonance imaging in stable mild cognitive impairment, prodromal alzheimer’s disease, and prodromal dementia with lewy bodies. Dement Geriatr Cogn Disord. 2020;1–6.32784302
  • AhmadG, RasoolN, RizwanK, et al. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg Chem. 2019;92:103216. doi:10.1016/j.bioorg.2019.10321631491567
  • SultanaN, SarfrazM, TanoliST, et al. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2, 3-dihydroquinazolin-4 (1H)-one as inhibitors of cholinesterases. Bioorg Chem. 2017;72:256–267. doi:10.1016/j.bioorg.2017.04.00928495556
  • TariotPN, CummingsJL, KatzIR, et al. A randomized, double‐blind, placebo‐controlled study of the efficacy and safety of donepezil in patients with Alzheimer’s disease in the nursing home setting. J Am Geriatr Soc. 2001;49(12):1590–1599. doi:10.1111/j.1532-5415.2001.49266.x11843990
  • ShahS, AhmadZ, YaseenM, et al. Phytochemicals, in vitro antioxidant, total phenolic contents and phytotoxic activity of Cornus macrophylla Wall bark collected from the North-West of Pakistan. Pak J Pharm Sci. 2015;28(1):23–28.25553682
  • KhanJ, AliG, RashidU, et al. Mechanistic evaluation of a novel cyclohexanone derivative’s functionality against nociception and inflammation: an in-vitro, in-vivo and in-silico approach. Eur J Pharmacol. 2021;902:174091. doi:10.1016/j.ejphar.2021.17409133865830
  • ManzoorS, PrajapatiSK, MajumdarS, et al. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer’s action: design, synthesis, crystal structure and in-vitro biological evaluation. Eur J Med Chem. 2021;215:113224. doi:10.1016/j.ejmech.2021.11322433582578
  • MakS, LiW, FuH, et al. Promising tacrine/huperzine A‐based dimeric AChE inhibitors for neurodegenerative disorders: from relieving symptoms to modifying diseases through multi‐target. J Neurochem. 2021. doi:10.1111/jnc.15379
  • TongX, LiX, AyazM, et al. Neuroprotective studies on Polygonum hydropiper L. essential oils using transgenic animal models. Front Pharmacol. 2020;11.31998136
  • ZebA, SadiqA, UllahF, AhmadS, AyazM. Investigations of anticholinestrase and antioxidant potentials of methanolic extract, subsequent fractions, crude saponins and flavonoids isolated from Isodon rugosus. Biol Res. 2014;47(1):1–10. doi:10.1186/0717-6287-47-125026971
  • AlonsoD, DorronsoroI, RubioL, et al. Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg Med Chem. 2005;13(24):6588–6597. doi:10.1016/j.bmc.2005.09.02916230018
  • AhmadA, UllahF, SadiqA, et al. Pharmacological evaluation of aldehydic-pyrrolidinedione against HCT-116, MDA-MB231, NIH/3T3, MCF-7 cancer cell lines, antioxidant and enzyme inhibition studies. Devel Ther. 2019;13:4185. doi:10.2147/DDDT.S226080
  • SaleemK, WaniWA, HaqueA, et al. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper (II), nickel (II) and iron (III) complexes of a pyrazoline-based ligand. Future Med Chem. 2013;5(2):135–146. doi:10.4155/fmc.12.20123360139
  • AdewumiOA, SinghV, SinghG. Chemical composition, traditional uses and biological activities of artemisia species. Int J Pharmacogn Phytochem. 2020;9(5):1124–1140.
  • PicklesC. Thermodynamic analysis of the separation of zinc and lead from electric arc furnace dust by selective reduction with metallic iron. Sep Purif Technol. 2008;59(2):115–128. doi:10.1016/j.seppur.2007.05.032
  • BlakemoreLJ, TrombleyPQ. Zinc as a neuromodulator in the central nervous system with a focus on the olfactory bulb. Front Cell Neurosci. 2017;11:297.29033788
  • MamaneV. Cascade reactions involving aromatic N-heterocycles: CN bond formation as key-step towards the synthesis of N-fused polycyclic heterocycles. Curr Org Chem. 2017;21(15):1342–1392. doi:10.2174/1385272820666160606155222
  • AkhtarS, AhmadH, AkhtarH, ZafarR, WaseemW, SherwaniMK. Protein kinase inhibitory potential and anti-fungal activities of metal complexes of anti-viral drug ribavirin. RADS J Pharm Pharm Sci. 2019;7(1):9–15.
  • OrellanaG, Alvarez IbarraC, SantoroJ. Hydrogen-1 and carbon-13 NMR coordination-induced shifts in a series of tris (. alpha.-diimine) ruthenium (II) complexes containing pyridine, pyrazine, and thiazole moieties. Inorg Chem. 1988;27(6):1025–1030. doi:10.1021/ic00279a018
  • ZubairM, SirajuddinM, HaiderA, et al. Synthesis, physicochemical characterizations and in vitro biological evaluations of amide based Zn (II) carboxylates. Inorganica Chim Acta. 2018;482:567–578. doi:10.1016/j.ica.2018.07.005
  • ZafarR, ZubairM, AliS, et al. Zinc metal carboxylates as potential anti-Alzheimer’s candidate: in vitro anticholinesterase, antioxidant and molecular docking studies. J Biomol Struct Dyn. 2020;1–11.
  • AyazM, JunaidM, UllahF, et al. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front Pharmacol. 2017;8:697. doi:10.3389/fphar.2017.0069729056913
  • AlqahtaniYS. Bioactive Stigmastadienone from Isodon rugosus as potential anticholinesterase, α-glucosidase and COX/LOX inhibitor: in-vitro and molecular docking studies. Steroids. 2021;172:108857. doi:10.1016/j.steroids.2021.10885733945799
  • YousafM, KhanM, AliM, et al. 2-Mercaptobenzimidazole derivatives as novel butyrylcholinesterase inhibitors: biology-oriented drug synthesis (BIODS), in-vitro and in-silico evaluation. J Chem Soc Pak. 2020;42(2):263–273.
  • AhmadA, UllahF, SadiqA, et al. Comparative cholinesterase, α-glucosidase inhibitory, antioxidant, molecular docking, and kinetic studies on potent succinimide derivatives. Drug Des Devel Ther. 2020;14:2165. doi:10.2147/DDDT.S237420
  • ZahoorM, ShafiqS, UllahH, et al. Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities. BMC Biochem. 2018;19(1):1–14. doi:10.1186/s12858-018-0095-729390959
  • JabeenM, AhmadS, ShahidK, et al. Ursolic acid hydrazide based organometallic complexes: synthesis, characterization, antibacterial, antioxidant, and docking studies. Front Chem. 2018;6:55. doi:10.3389/fchem.2018.0005529594100
  • SadiqA, RashidU, AhmadS, et al. Treating hyperglycemia from eryngium caeruleum M. bieb: in-vitro α-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Front Chem. 2020;8:1064. doi:10.3389/fchem.2020.558641
  • BibiA, ShahT, SadiqA, et al. L-isoleucine-catalyzed michael synthesis of N-alkylsuccinimide derivatives and their antioxidant activity assessment. Russ J Org Chem. 2019;55(11):1749–1754. doi:10.1134/S1070428019110174
  • AyazM, AhmadI, SadiqA, et al. Persicaria hydropiper (L.) Delarbre: a review on traditional uses, bioactive chemical constituents and pharmacological and toxicological activities. J Ethnopharmacol. 2020;251:112516. doi:10.1016/j.jep.2019.11251631884037
  • SadiqA, ZebA, UllahF, et al. Chemical characterization, analgesic, antioxidant, and anticholinesterase potentials of essential oils from Isodon rugosus Wall. ex. Benth. Front Pharmacol. 2018;9:623. doi:10.3389/fphar.2018.0062329950997
  • SuwanhomP, NualnoiT, KhongkowP, LeeVS, LomlimL. Synthesis and evaluation of chromone-2-carboxamido-alkylamines as potent acetylcholinesterase inhibitors. Med Chem Res. 2020;29(3):564–574. doi:10.1007/s00044-020-02508-5
  • ScottiL, MendoncaF, IshikiH, et al. Docking studies for multi-target drugs. Curr Drug Targets. 2017;18(5):592–604. doi:10.2174/138945011666615082511181826302806
  • Shaheen BibiIU, UllahI, ZhuB, et al. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci Rep. 2021;11.33420151
  • ZubairM, SirajuddinM, HaiderA, et al. Organotin (IV) complexes as catalyst for biodiesel formation: synthesis, structural elucidation and computational studies. Appl Organomet Chem. 2020;34(1):e5305. doi:10.1002/aoc.5305
  • HokkanenSRK. Old-Age Hippocampal Sclerosis in the Aged Population. University of Cambridge; 2018.