244
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Effects of Exenatide on Coagulation and Platelet Aggregation in Patients with Type 2 Diabetes

, , , ORCID Icon & ORCID Icon
Pages 3027-3040 | Published online: 12 Jul 2021

References

  • BeckmanJA, CreagerMA, LibbyP. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–2581. doi:10.1001/jama.287.19.257012020339
  • ChiltonR, WyattJ, NandishS, OliverosR, LujanM. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am J Med. 2011;124(1 Suppl):S35–53. doi:10.1016/j.amjmed.2010.11.00421194579
  • VaidyulaVR, RaoAK, MozzoliM, HomkoC, CheungP, BodenG. Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand. Diabetes. 2006;55(1):202–208. [ PMID: 16380494]. doi:10.2337/diabetes.55.01.06.db05-102616380494
  • MylotteD, KavanaghGF, PeaceAJ, et al. Platelet reactivity in type 2 diabetes mellitus: a comparative analysis with survivors of myocardial infarction and the role of glycaemic control. Platelets. 2012;23(6):439–446. doi:10.3109/09537104.2011.63493222150374
  • AngiolilloDJ, BernardoE, SabatéM, et al. Impact of platelet reactivity on cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol. 2007;50(16):1541–1547. doi:10.1016/j.jacc.2007.05.04917936152
  • StrainWD, PaldániusPM. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol. 2018;17(1):57. doi:10.1186/s12933-018-0703-229669543
  • EbaraS, MarumoM, MukaiJ, OhkiM, UchidaK, WakabayashiI. Relationships of oxidized HDL with blood coagulation and fibrinolysis in patients with type 2 diabetes mellitus. J Thromb Thrombolysis. 2018;45(2):200–205. doi:10.1007/s11239-017-1594-x29247447
  • OsendeJI, FusterV, LevEI, et al. Testing platelet activation with a shear-dependent platelet function test versus aggregation-based tests: relevance for monitoring long-term glycoprotein IIb/IIIa inhibition. Circulation. 2001;103(11):1488–1491. doi:10.1161/01.cir.103.11.148811257073
  • ZhouAM, XiangYJ, LiuEQ, et al. Salvianolic acid a inhibits platelet activation and aggregation in patients with type 2 diabetes mellitus. BMC Cardiovasc Disord. 2020;20(1):15. doi:10.1186/s12872-019-01316-z31931718
  • MarsoSP, DanielsGH, Brown-FrandsenK, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–322. doi:10.1056/NEJMoa160382727295427
  • MarsoSP, BainSC, ConsoliA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844. doi:10.1056/NEJMoa160714127633186
  • LeeYS, JunHS. Anti-inflammatory effects of glp-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:3094642. doi:10.1155/2016/309464227110066
  • ChaudhuriA, GhanimH, VoraM, et al. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012;97(1):198–207. doi:10.1210/jc.2011-150822013105
  • De CiuceisC, Agabiti-RoseiC, RossiniC, et al. Microvascular density and circulating endothelial progenitor cells before and after treatment with incretin mimetics in diabetic patients. High Blood Press Cardiovasc Prev. 2018;25(4):369–378. doi:10.1007/s40292-018-0279-730203268
  • FadiniGP, MiorinM, FaccoM, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45(9):1449–1457. doi:10.1016/j.jacc.2004.11.06715862417
  • StevenS, JurkK, KoppM, et al. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br J Pharmacol. 2017;174(12):1620–1632. doi:10.1111/bph.1354927435156
  • Cameron-VendrigA, RehemanA, SirajMA, et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes. 2016;65(6):1714–1723. doi:10.2337/db15-114126936963
  • JiaG, AroorAR, SowersJR. Glucagon-like peptide 1 receptor activation and platelet function: beyond glycemic control. Diabetes. 2016;65(6):1487–1489. doi:10.2337/dbi16-001427222394
  • VinikAI, ErbasT, ParkTS, NolanR, PittengerGL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–1485. doi:10.2337/diacare.24.8.147611473089
  • CarrizzoA, IzzoC, OlivetiM, et al. The main determinants of diabetes mellitus vascular complications: endothelial dysfunction and platelet hyperaggregation. Int J Mol Sci. 2018;19(10):10. doi:10.3390/ijms19102968
  • RolliniF, FranchiF, Muñiz-LozanoA, AngiolilloDJ. Platelet function profiles in patients with diabetes mellitus. J Cardiovasc Transl Res. 2013;6(3):329–345. doi:10.1007/s12265-013-9449-023404189
  • SuslovaTE, SitozhevskiiAV, OgurkovaON, et al. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: cGMP- and NO-dependent mechanisms in the insulin-mediated platelet aggregation. Front Physiol. 2014;5:501. doi:10.3389/fphys.2014.0050125601838
  • PretoriusL, ThomsonGJA, AdamsRCM, NellTA, LaubscherWA, PretoriusE. Platelet activity and hypercoagulation in type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):141. doi:10.1186/s12933-018-0783-z30388964
  • Gorgojo-MartínezJJ, Gargallo-FernándezMA, Brito-SanfielM, Lisbona-CatalánA. Real-world clinical outcomes and predictors of glycaemic and weight response to exenatide once weekly in patients with type 2 diabetes: the CIBELES project. Int J Clin Pract. 2018;72(3):e13055. doi:10.1111/ijcp.1305529341370
  • DruckerDJ, BuseJB, TaylorK, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372(9645):1240–1250. doi:10.1016/S0140-6736(08)61206-418782641
  • SunF, WuS, WangJ, et al. Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis. Clin Ther. 2015;37(1):225–241.e228. doi:10.1016/j.clinthera.2014.11.00825554560
  • DruckerDJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016;24(1):15–30. doi:10.1016/j.cmet.2016.06.00927345422
  • SivertsenJ, RosenmeierJ, HolstJJ, VilsbøllT. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol. 2012;9(4):209–222. doi:10.1038/nrcardio.2011.21122290234
  • LovshinJA, BarnieA, DeAlmeidaA, LoganA, ZinmanB, DruckerDJ. Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic peptide in hypertensive subjects with type 2 diabetes. Diabetes Care. 2015;38(1):132–139. doi:10.2337/dc14-195825414155
  • GreseleP. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost. 2015;13(2):314–322. doi:10.1111/jth.1279225403439
  • HuskensD, SangY, KoningsJ, et al. Standardization and reference ranges for whole blood platelet function measurements using a flow cytometric platelet activation test. PLoS One. 2018;13(2):e0192079. doi:10.1371/journal.pone.019207929389990
  • AsareR, Opoku-OkrahC, DanquahKO, et al. Assessment of platelet indices and platelet activation markers in children with Plasmodium falciparum malaria. Malar J. 2020;19(1):143. doi:10.1186/s12936-020-03218-432268918
  • HouM, YuJ, ZhangL, LiuC. [Changes and significance of P-selectin and PAC-1 in coronary heart disease before and after stenting]. Zhonghua Yi Xue Za Zhi. 2014;94(10):766–768. PMID: 24844962. [ Chinese]24844962
  • CaronA, ThéorêtJF, MousaSA, MerhiY. Anti-platelet effects of GPIIb/IIIa and P-selectin antagonism, platelet activation, and binding to neutrophils. J Cardiovasc Pharmacol. 2002;40(2):296–306. doi:10.1097/00005344-200208000-0001512131559
  • SatohK, OzakiY. [Attempts for aspirin monitoring with a new assay system, Ultegra Rapid Platelet Function Assay (RPFA), based on turbidimetric platelet agglutination of whole blood samples]. Rinsho Byori. 2006;54(6):576–582. PMID: 16872006. [ Japanese]16872006
  • SimeoneP, LianiR, TripaldiR, et al. Thromboxane-Dependent Platelet Activation in Obese Subjects with Prediabetes or Early Type 2 Diabetes: effects of Liraglutide- or Lifestyle Changes-Induced Weight Loss. Nutrients. 2018;10(12):1872. doi:10.3390/nu10121872
  • PaesAMA, GasparRS, FuentesE, WehingerS, PalomoI, TrostchanskyA. Lipid metabolism and signaling in platelet function. Adv Exp Med Biol. 2019;1127:97–115. doi:10.1007/978-3-030-11488-6_731140174
  • BouletMM, CheillanD, Di FilippoM, et al. Large triglyceride-rich lipoproteins from fasting patients with type 2 diabetes activate platelets. Diabetes Metab. 2020;46(1):54–60. doi:10.1016/j.diabet.2019.03.00230981822
  • KaurR, KaurM, SinghJ. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121. doi:10.1186/s12933-018-0763-330170601
  • BaraleC, BuraccoS, CavalotF, FrascaroliC, GuerrasioA, RussoI. Glucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation. Thromb Haemost. 2017;117(6):1115–1128. doi:10.1160/TH16-07-058628405672
  • DaiY, MehtaJL, ChenM. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2013;27(5):371–380. doi:10.1007/s10557-013-6463-z23657563
  • MauriceDH, HaslamRJ. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol. 1990;37(5):671–681. PMID: 2160060.2160060
  • SantilliF, SimeoneP, LianiR, DavìG. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015;120:28–39. doi:10.1016/j.prostaglandins.2015.05.00225986598
  • BowenR, HaslamRJ. Effects of nitrovasodilators on platelet cyclic nucleotide levels in rabbit blood; role for cyclic AMP in synergistic inhibition of platelet function by SIN-1 and prostaglandin E1. J Cardiovasc Pharmacol. 1991;17(3):424–433. doi:10.1097/00005344-199103000-000111711604
  • RadomskiMW, PalmerRM, MoncadaS. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol. 1987;92(3):639–646. doi:10.1111/j.1476-5381.1987.tb11367.x3322462
  • PigazziA, HeydrickS, FolliF, BenoitS, MichelsonA, LoscalzoJ. Nitric oxide inhibits thrombin receptor-activating peptide-induced phosphoinositide 3-kinase activity in human platelets. J Biol Chem. 1999;274(20):14368–14375. doi:10.1074/jbc.274.20.1436810318860
  • ZhangJ, ZhangJ, ShattilSJ, CunninghamMC, RittenhouseSE. Phosphoinositide 3-kinase gamma and p85/phosphoinositide 3-kinase in platelets. Relative activation by thrombin receptor or beta-phorbol myristate acetate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J Biol Chem. 1996;271(11):6265–6272. doi:10.1074/jbc.271.11.62658626420
  • TsikasD, IkicM, TewesKS, RaidaM, FrölichJC. Inhibition of platelet aggregation by S-nitroso-cysteine via cGMP-independent mechanisms: evidence of inhibition of thromboxane A2 synthesis in human blood platelets. FEBS Lett. 1999;442(2–3):162–166. doi:10.1016/s0014-5793(98)01633-09928994
  • SogoN, MagidKS, ShawCA, WebbDJ, MegsonIL. Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cGMP-independent mechanisms. Biochem Biophys Res Commun. 2000;279(2):412–419. doi:10.1006/bbrc.2000.397611118301
  • BeghettiM, SparlingC, CoxPN, StephensD, AdatiaI. Inhaled NO inhibits platelet aggregation and elevates plasma but not intraplatelet cGMP in healthy human volunteers. Am J Physiol Heart Circ Physiol. 2003;285(2):H637–642. doi:10.1152/ajpheart.00622.200212750066
  • BaraleC, FrascaroliC, CavalotF, GuerrasioA, RussoI. In Type 2 diabetes mellitus the glp-1 effects on platelets are impaired. Atherosclerosis. 2016;252:e257–e258. doi:10.1016/j.atherosclerosis.2016.07.081