256
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Baicalin Rescues Cognitive Dysfunction, Mitigates Neurodegeneration, and Exerts Anti-Epileptic Effects Through Activating TLR4/MYD88/Caspase-3 Pathway in Rats

, , , , , , , , & show all
Pages 3163-3180 | Published online: 20 Jul 2021

References

  • KhanAU, AkramM, DaniyalM, et al. Awareness and current knowledge of epilepsy. Metab Brain Dis. 2020;35(1):45–63. doi:10.1007/s11011-019-00494-131605258
  • SajatovicM, TatsuokaC, WelterE, et al. Targeted self-management of epilepsy and mental illness for individuals with epilepsy and psychiatric comorbidity. Epilepsy Behav. 2016;64(Pt A):152–159. doi:10.1016/j.yebeh.2016.08.01227743547
  • HauserRM, HenshallDC, LubinFD. The epigenetics of epilepsy and its progression. Neuroscientist. 2018;24(2):186–200. doi:10.1177/107385841770584028468530
  • KwanP, BrodieMJ. Definition of refractory epilepsy: defining the indefinable? Lancet Neurol. 2010;9(1):27–29. doi:10.1016/S1474-4422(09)70304-719914135
  • SchmidtD. The clinical impact of new antiepileptic drugs after a decade of use in epilepsy. Epilepsy Res. 2002;50(1–2):21–32. doi:10.1016/s0920-1211(02)00065-712151114
  • ScharfmanHE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep. 2007;7(4):348–354. doi:10.1007/s11910-007-0053-z17618543
  • GeronziU, LottiF, GrossoS. Oxidative stress in epilepsy. Expert Rev Neurother. 2018;18(5):427–434. doi:10.1080/14737175.2018.146541029651881
  • SamokhinaE, SamokhinA. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci. 2018;128(11):1086–1096. doi:10.1080/00207454.2018.148106429792126
  • Abdel-SalamO, SleemAA, SayedM, et al. Capsaicin exerts anti-convulsant and neuroprotective effects in pentylenetetrazole-induced seizures. Neurochem Res. 2020;45(5):1045–1061. doi:10.1007/s11064-020-02979-332036609
  • ZhangJX, ChenZY, ZhangLL, et al. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct. 2021;12(3):1176–1191. doi:10.1039/d0fo02433c33432314
  • DuanH, KhanGJ, ShangLJ, et al. Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis. Food Chem Toxicol. 2021;150:112058. doi:10.1016/j.fct.2021.11205833582168
  • HopkinsAL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–690. doi:10.1038/nchembio.11818936753
  • LiuH, LiXM, DuanY, et al. Mechanism of gypenosides of Gynostemma pentaphyllum inducing apoptosis of renal cell carcinoma by PI3K/AKT/mTOR pathway. J Ethnopharmacol. 2021;271:113907. doi:10.1016/j.jep.2021.11390733556477
  • ZhaoQ, ChenXY, MartinC. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull. 2016;61(18):1391–1398. doi:10.1007/s11434-016-1136-5
  • LiYY, SongK, ZhangHL, et al. Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Res Bull. 2020;164:314–324. doi:10.1016/j.brainresbull.2020.08.01632858128
  • DuanXY, SunY, ZhaoZF, et al. Baicalin attenuates LPS-induced alveolar type II epithelial cell A549 injury by attenuation of the FSTL1 signaling pathway via increasing miR-200b-3p expression. Innate Immun. 2021;27(4):294–312. doi:10.1177/1753425921101388734000873
  • ZhangYL, LiuSY, WanJY, et al. Preparation, characterization and in vivo study of borneol-baicalin-liposomes for treatment of cerebral ischemia-reperfusion injury. Int J Nanomedicine. 2020;15:5977–5989. doi:10.2147/IJN.S25993832904394
  • LeiKC, ShenYJ, HeYJ, et al. Baicalin represses C/EBP β via its antioxidative effect in parkinson’s disease. Oxid Med Cell Longev. 2020;2020:8951907. doi:10.1155/2020/895190732566108
  • XiaoZG, CaoZQ, YangJL, et al. Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression. Biochem Pharmacol. 2021;190:114594. doi:10.1016/j.bcp.2021.11459433964281
  • LiY, LiuTT, LiYT, et al. Baicalin ameliorates cognitive impairment and protects microglia from lps-induced neuroinflammation via the SIRT1/HMGB1 pathway. Oxid Med Cell Longev. 2020;2020:4751349. doi:10.1155/2020/475134933029280
  • PingX, QinSK, LiuSN, et al. Effects of Huazhuo Jiedu Shugan Decoction on cognitive and emotional disorders in a rat model of epilepsy: possible involvement of AC-cAMP-CREB signaling and NPY expression. Evid Based Complement Alternat Med. 2019;2019:4352879. doi:10.1155/2019/435287931915447
  • VanEJ, VanDD, De DeynPP. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 2019;95:51–55. doi:10.1016/j.yebeh.2019.02.02931026782
  • PranzatelliMR, TateED. Chloral hydrate for progressive myoclonus epilepsy: a new look at an old drug. Pediatr Neurol. 2001;25(5):385–389. doi:10.1016/s0887-8994(01)00350-211744313
  • MoradiP, GanjkhaniM, AnarkooliIJ, et al. Neuroprotective effects of lovastatin in the pilocarpine rat model of epilepsy according to the expression of neurotrophic factors. Metab Brain Dis. 2019;34(4):1061–1069. doi:10.1007/s11011-019-00424-131144103
  • YumM, KoT, KimDW. β-Hydroxybutyrate increases the pilocarpine-induced seizure threshold in young mice. Brain Dev. 2012;34(3):181–184. doi:10.1016/j.braindev.2011.05.01221723679
  • Shishmanova-DosevaM, AtanasovaD, UzunovaY, et al. Effects of lacosamide treatment on epileptogenesis, neuronal damage and behavioral comorbidities in a rat model of temporal lobe epilepsy. Int J Mol Sci. 2021;22(9):4667. doi:10.3390/ijms2209466733925082
  • AlachkarA, LotfyM, AdeghateE, et al. Ameliorating effects of histamine H3 receptor antagonist E177 on acute pentylenetetrazole-induced memory impairments in rats. Behav Brain Res. 2021;405:113193. doi:10.1016/j.bbr.2021.11319333626390
  • LiuYF, GaoF, LiXW, et al. The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem Res. 2012;37(8):1670–1680. doi:10.1007/s11064-012-0771-822528832
  • SumiyoshiE, HashimotoM, HossainS, et al. Anredera cordifolia extract enhances learning and memory in senescence-accelerated mouse-prone 8 (SAMP8) mice. Food Funct. 2021;12(9):3992–4004. doi:10.1039/d0fo03272g33977955
  • ZhaoYN, CaoYF, ZhangYH, et al. Nelumbo nucifera Gaertn Stems (Hegeng) improved depression behavior in CUMS mice by regulating NCAM and GAP-43 expression. Evid Based Complement Alternat Med. 2020;2020:3056954. doi:10.1155/2020/305695432308703
  • DenningerJK, SmithBM, KirbyED, Novel object recognition and object location behavioral testing in mice on a budget. J Vis Exp. 2018;141:3791–58593. doi:10.3791/58593
  • BarkerBS, SpampanatoJ, McCarrenHS, et al. The K7 modulator, retigabine, is an efficacious antiseizure drug for delayed treatment of organophosphate-induced status epilepticus. Neuroscience. 2021;463:143–158. doi:10.1016/j.neuroscience.2021.03.02933836243
  • LiuY, ChengY, ZhangW, et al. Neuroprotective effect of a new free radical scavenger HL-008 in an ischemia-reperfusion injury rat model. Neuroscience. 2021;465:105–115. doi:10.1016/j.neuroscience.2021.04.01233915200
  • RuJL, LiP, WangJN, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminformatics. 2014;6:13. doi:10.1186/1758-2946-6-13
  • WangWJ, WangSZ, LiuTL, et al. Resveratrol: multi-targets mechanism on neurodegenerative diseases based on network pharmacology. Front Pharmacol. 2020;11:694. doi:10.3389/fphar.2020.0069432477148
  • KimSH, ChenJ, ChengTJ, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102–D1109. doi:10.1093/nar/gky103330371825
  • KeiserMJ, RothBL, ArmbrusterBN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25(2):197–206. doi:10.1038/nbt128417287757
  • DavisAP, GrondinCJ, JohnsonRJ, et al. The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res. 2019;47:D948–D954. doi:10.1093/nar/gky86830247620
  • KuhnM, SzklarczykD, Pletscher-FrankildS, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res. 2014;42:D401–D407. doi:10.1093/nar/gkt120724293645
  • FangSS, DongL, LiuL, et al. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021;49(D1):D1197–D1206. doi:10.1093/nar/gkaa106333264402
  • YaoZJ, DongJ, CheYJ, et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J Comput Aided Mol Des. 2016;30(5):413–424. doi:10.1007/s10822-016-9915-227167132
  • StelzerG, RosenN, PlaschkesI, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1.30.1–1.30.33. doi:10.1002/cpbi.5
  • WishartDS, FeunangYD, GuoAC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–D1082. doi:10.1093/nar/gkx103729126136
  • WangYX, ZhangS, LiFC, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48:D1031–D1041. doi:10.1093/nar/gkz98131691823
  • PiñeroJ, BravoA, Queralt-RosinachN, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45:D833–D839. doi:10.1093/nar/gkw94327924018
  • ShannonP, MarkielA, OzierO, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.123930314597658
  • BaderGD, HogueCW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. doi:10.1186/1471-2105-4-2
  • ZhouYY, ZhouB, PacheL, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-630944313
  • SunZY, GaoCH, GaoDD, et al. Reduction in pericyte coverage leads to blood-brain barrier dysfunction via endothelial transcytosis following chronic cerebral hypoperfusion. Fluids Barriers CNS. 2021;18(1):21. doi:10.1186/s12987-021-00255-233952281
  • JennumP, SabersA, ChristensenJ, et al. Socioeconomic outcome of epilepsy surgery: a controlled national study. Seizure. 2016;42:52–56. doi:10.1016/j.seizure.2016.09.01627770730
  • HattiangadyB, KurubaR, ShuaiB, et al. Hippocampal neural stem cell grafting after status epilepticus alleviates chronic epilepsy and abnormal plasticity, and maintains better memory and mood function. Aging Dis. 2020;11(6):1374–1394. doi:10.14336/AD.2020.102033269095
  • HodaU, JainS, SamimM, et al. Embelin ameliorates cognitive dysfunction and progression of kindling in pentylenetetrazol-induced kindling in mice by attenuating brain inflammation. Epilepsy Behav. 2021;116:107788. doi:10.1016/j.yebeh.2021.10778833581600
  • WillmentK, HillM, BasletG, et al. Cognitive impairment and evaluation in psychogenic nonepileptic seizures: an integrated cognitive-emotional approach. Clin EEG Neurosci. 2015;46(1):42–53. doi:10.1177/155005941456688125780266
  • SchleicherEM, OttFW, MüllerM, et al. Prolonged cannabidiol treatment lacks on detrimental effects on memory, motor performance and anxiety in C57BL/6J mice. Front Behav Neurosci. 2019;13:94. doi:10.3389/fnbeh.2019.0009431133833
  • JinX, LiuMY, ZhangDF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther. 2019;25(5):575–590. doi:10.1111/cns.1308630676698
  • BartolomeiF, KhalilM, WendlingF, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia. 2005;46(5):677–687. doi:10.1111/j.1528-1167.2005.43804.x15857433
  • ShettyAK. Hippocampal injury-induced cognitive and mood dysfunction, altered neurogenesis, and epilepsy: can early neural stem cell grafting intervention provide protection? Epilepsy Behav. 2014;38:117–124. doi:10.1016/j.yebeh.2013.12.00124433836
  • RamandiD, Elahdadi SalmaniM, MoghimiA, et al. Pharmacological upregulation of GLT-1 alleviates the cognitive impairments in the animal model of temporal lobe epilepsy. PLoS One. 2021;16(1):e0246068. doi:10.1371/journal.pone.024606833507976
  • VezzaniA. Epilepsy and inflammation in the brain: overview and pathophysiology. Epilepsy Curr. 2014;14(1 Suppl):3–7. doi:10.5698/1535-7511-14.s2.324955068
  • VezzaniA, AronicaE, MazaratiA, et al. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21. doi:10.1016/j.expneurol.2011.09.03321985866
  • AllanSM, RothwellNJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2(10):734–744. doi:10.1038/3509458311584311
  • ZhuY, LiuM, QuS, et al. Elaphuri davidiani cornu improves depressive-like behavior in mice and increases neurotrophic factor expression in mouse primary astrocytes via cAMP and ERK-dependent pathways. Front Pharmacol. 2020;11:593993. doi:10.3389/fphar.2020.59399333364963
  • LiYP, LiangWY, GuoCJ, et al. Renshen Shouwu extract enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-κB/NLRP3 signaling pathway following ischemic stroke in rats. J Ethnopharmacol. 2020;253:112616. doi:10.1016/j.jep.2020.11261632007631
  • XuJ, PeiJ, FuQH, et al. The prognostic value of traditional chinese medicine symptoms in acute ischemic stroke: a pilot study. Evid Based Complement Alternat Med. 2020;2020:1520851. doi:10.1155/2020/152085132733577
  • ZhangSW, LiLL, HuJT, et al. Polysaccharide of Taxus chinensis var. mairei Cheng et L.K.Fu attenuates neurotoxicity and cognitive dysfunction in mice with Alzheimer’s disease. Pharm Biol. 2020;58(1):959–968. doi:10.1080/13880209.2020.181710232970507
  • YuXX, GuanQB, WangYP, et al. Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling. Epilepsy Res. 2019;154:90–96. doi:10.1016/j.eplepsyres.2019.05.00731112902
  • YangP, QinY, ZhuY, et al. Chaihu-Longgu-Muli decoction relieves epileptic symptoms by improving autophagy in hippocampal neurons. J Ethnopharmacol. 2020;259:112990. doi:10.1016/j.jep.2020.11299032442588
  • TangCP, YeY, FengYJ, et al. TCM, brain function and drug space. Nat Prod Rep. 2016;33(1):6–25. doi:10.1039/c5np00049a26583936
  • MuhammadJ, KhanA, AliA, et al. Network pharmacology: exploring the resources and methodologies. Curr Top Med Chem. 2018;18(12):949–964. doi:10.2174/156802661866618033014135129600765
  • HuangXJ, HeCJ, LiangS, et al. Veratrilla baillonii franch could alleviate lipid accumulation in LO2 cells by regulating oxidative, inflammatory, and lipid metabolic signaling pathways. Front Pharmacol. 2020;11:575772. doi:10.3389/fphar.2020.57577233071788
  • WangJS, FengJL, DaiHH, et al. Achyranthis bidentatae radixPotential mechanism of plus semen vaccariae granules in the treatment of diabetes mellitus-induced erectile dysfunction in rats utilizing combined experimental model and network pharmacology. Pharm Biol. 2021;59(1):547–556. doi:10.1080/13880209.2021.192062133962551
  • WangZY, JiangZM, XiaoPT, et al. The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach. Eur J Pharmacol. 2020;878:173103. doi:10.1016/j.ejphar.2020.17310332278854
  • HuangQ, LiuR, LiuJ, et al. Integrated network pharmacology analysis and experimental validation to reveal the mechanism of anti-insulin resistance effects of Moringa oleifera seeds. Drug Des Devel Ther. 2020;14:4069–4084. doi:10.2147/DDDT.S265198
  • TakedaK, KaishoT, AkiraS. Toll-like receptors. Annu Rev Immunol. 2003;21:335–376. doi:10.1146/annurev.immunol.21.120601.14112612524386
  • RahimifardM, MaqboolF, Moeini-NodehS, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–19. doi:10.1016/j.arr.2017.02.00428235660
  • ChengZK, ZhangM, LingCL, et al. Neuroprotective effects of ginsenosides against cerebral ischemia. Molecules. 2019;24(6):1102. doi:10.3390/molecules24061102
  • CongL, YangS, ZhangY, et al. DFMG attenuates the activation of macrophages induced by co-culture with LPC-injured HUVE-12 cells via the TLR4/MyD88/NF-κB signaling pathway. Int J Mol Med. 2018;41(5):2619–2628. doi:10.3892/ijmm.2018.351129484368
  • YangH, ChengX, YangYL, et al. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural Regen Res. 2017;12(11):1860–1864. doi:10.4103/1673-5374.21904829239332
  • BajoM, PatelRR, HedgesDM, et al. Role of MyD88 in IL-1β and ethanol modulation of GABAergic transmission in the central amygdala. Brain Sci. 2019;9(12):361. doi:10.3390/brainsci9120361
  • ZhouLJ, LiuZJ, WangZX, et al. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci Rep. 2017;7:44822. doi:10.1038/srep4482228303957
  • MazaratiAM, PinedaE, ShinD, et al. Comorbidity between epilepsy and depression: role of hippocampal interleukin-1beta. Neurobiol Dis. 2010;37(2):461–467. doi:10.1016/j.nbd.2009.11.00119900553
  • WeiH, AlbertsI, BrainLX. IL-6 and autism. Neuroscience. 2013;252:320–325. doi:10.1016/j.neuroscience.2013.08.02523994594
  • ConroySM, NguyenV, QuinaLA, et al. Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. J Neuroimmunol. 2004;155(1–2):43–54. doi:10.1016/j.jneuroim.2004.06.01415342195
  • ZhuX, LiuJ, ChenO, et al. Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway. Inflammopharmacology. 2019;27(6):1143–1153. doi:10.1007/s10787-019-00592-731037573
  • CuiN, LiSX, ZhaoXL, et al. Expression of Bcl-2, Bax and Caspase-3 in nerve tissues of rats chronically exposed to 2,5-hexanedione. Neurochem Res. 2007;32(9):1566–1572. doi:10.1007/s11064-007-9359-017492505
  • CaoH, ZhangL, QuZ, et al. The protective effect of hydroxylated fullerene pretreatment on pilocarpine-induced status epilepticus. Brain Res. 2021;1764:147468. doi:10.1016/j.brainres.2021.14746833831409