272
Views
6
CrossRef citations to date
0
Altmetric
Review

An Overview on the Potential Roles of EGCG in the Treatment of COVID-19 Infection

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 4447-4454 | Published online: 28 Oct 2021

References

  • BimonteS, CrispoA, AmoreA, CelentanoE, CuomoA, CascellaM. Potential antiviral drugs for SARS-Cov-2 treatment: preclinical findings and ongoing clinical research. In vivo. 2020;34(3 Suppl):1597–1602. doi:10.21873/invivo.1194932503817
  • WuF, ZhaoS, YuB, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi:10.1038/s41586-020-2008-332015508
  • WiersingaWJ, RhodesA, ChengAC, PeacockSJ, PrescottHC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793. doi:10.1001/jama.2020.1283932648899
  • PetersenE, KoopmansM, GoU, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020;20(9):e238–e244. doi:10.1016/S1473-3099(20)30484-932628905
  • NagyA, AlhatlaniB. An overview of current COVID-19 vaccine platforms. Comput Struct Biotechnol J. 2021;19:2508–2517. doi:10.1016/j.csbj.2021.04.06133936564
  • VitielloA, FerraraF, PortaR. Remdesivir and COVID-19 infection, therapeutic benefits or unnecessary risks? Ir J Med Sci. 2021;1–2. doi:10.1007/s11845-020-02482-2
  • BadenLR, El SahlyHM, EssinkB, et al.; COVE Study Group. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi:10.1056/NEJMoa203538933378609
  • XiaX. Domains and functions of spike protein in Sars-Cov-2 in the context of vaccine design. Viruses. 2021;13(1):109. doi:10.3390/v1301010933466921
  • Bjørnstad-TuvengTH, RudjordA, AnkerP. Fatal cerebral haemorrhage after COVID-19 vaccine. Tidsskr nor Laegeforen. 2021;141. English, Norwegian. doi:10.4045/tidsskr.21.0312
  • MaasDPMSM, KramersC, SmitHJCA, MiddeldorpS, HelslootI. Prikpauze AstraZeneca proportioneel? [Temporary suspension of AstraZeneca’s vaccine; a reconstruction]. Ned Tijdschr Geneeskd. 2021;165:D6065. Dutch.33914428
  • CDC Emerging Sars-Cov-2 Variants. Available from: https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html#. Accessed January 28, 2021.
  • BimonteS, CascellaM. The potential roles of epigallocatechin-3-gallate in the treatment of ovarian cancer: current state of knowledge. Drug Des Devel Ther. 2020;14:4245–4250. doi:10.2147/DDDT.S253092
  • BimonteS, CascellaM, BarbieriA, ArraC, CuomoA. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: an update of the current state of knowledge. Infect Agent Cancer. 2020;15:2. doi:10.1186/s13027-020-0270-531938038
  • BimonteS, CascellaM, BarbieriA, ArraC, CuomoA. Shining a light on the effects of the combination of (-)-epigallocatechin-3-gallate and tapentadol on the growth of human triple-negative breast cancer cells. In Vivo. 2019;33(5):1463–1468. doi:10.21873/invivo.1162531471393
  • BimonteS, AlbinoV, PiccirilloM, et al. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: experimental findings and translational perspectives. Drug Des Devel Ther. 2019;13:611–621. doi:10.2147/DDDT.S180079
  • CascellaM, BimonteS, MuzioMR, SchiavoneV, CuomoA. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agent Cancer. 2017;12:36. doi:10.1186/s13027-017-0145-628642806
  • BimonteS, CascellaM, LeongitoM, et al. An overview of pre-clinical studies on the effects of (-)-epigallocatechin-3-gallate, a catechin found in green tea, in treatment of pancreatic cancer. Recenti Prog Med. 2017;108(6):282–287. doi:10.1701/2715.2771528631776
  • BimonteS, LeongitoM, BarbieriA, et al. Inhibitory effect of (-)-epigallocatechin-3-gallate and bleomycin on human pancreatic cancer MiaPaca-2 cell growth. Infect Agent Cancer. 2015;10:22. doi:10.1186/s13027-015-0016-y26225138
  • NagleDG, FerreiraD, ZhouYD. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry. 2006;67(17):1849–1855. doi:10.1016/j.phytochem.2006.06.02016876833
  • XuJ, XuZ, ZhengW. A review of the antiviral role of green tea catechins. Molecules. 2017;22(8):1337. doi:10.3390/molecules22081337
  • SteinmannJ, BuerJ, PietschmannT, SteinmannE. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013;168(5):1059–1073. doi:10.1111/bph.1200923072320
  • WangYQ, LiQS, ZhengXQ, LuJL, LiangYR. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules. 2021;26(13):3962. doi:10.3390/molecules2613396234209485
  • XuJ, GuW, LiC, et al. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha. J Nat Med. 2016;70(3):584–591. doi:10.1007/s11418-016-0980-626968537
  • ZhongL, HuJ, ShuW, GaoB, XiongS. Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death Dis. 2015;6(5):e1770. doi:10.1038/cddis.2015.13625996297
  • PangJY, ZhaoKJ, WangJB, MaZJ, XiaoXH. Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro. J Zhejiang Univ Sci B. 2014;15(6):533–539. doi:10.1631/jzus.B130030724903990
  • ChenM, SällbergM, HughesJ, et al. Immune tolerance split between hepatitis B virus precore and core proteins. J Virol. 2005;79(5):3016–3027. doi:10.1128/JVI.79.5.3016-3027.200515709022
  • HeW, LiLX, LiaoQJ, LiuCL, ChenXL. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication - inducible cell line. World J Gastroenterol. 2011;17(11):1507–1514. doi:10.3748/wjg.v17.i11.150721472112
  • HaberichterJ, RobertsS, AbbasiI, DedthanouP, PradhanP, NguyenML. The telomerase inhibitor MST-312 interferes with multiple steps in the herpes simplex virus life cycle. J Virol. 2015;89(19):9804–9816. doi:10.1128/JVI.01006-1526178994
  • IsaacsCE, WenGY, XuW, et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother. 2008;52(3):962–970. doi:10.1128/AAC.00825-0718195068
  • GosslauA, En JaoDL, HuangMT, et al. Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol Nutr Food Res. 2011;55(2):198–208. doi:10.1002/mnfr.20100016520669245
  • PradhanP, NguyenML. Herpes simplex virus virucidal activity of MST-312 and epigallocatechin gallate. Virus Res. 2018;249:93–98. doi:10.1016/j.virusres.2018.03.01529604359
  • KutokJL, WangF. Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol. 2006;1:375–404. doi:10.1146/annurev.pathol.1.110304.10020918039120
  • LoYM. Quantitative analysis of Epstein-Barr virus DNA in plasma and serum: applications to tumor detection and monitoring. Ann N Y Acad Sci. 2001;945:68–72. doi:10.1111/j.1749-6632.2001.tb03865.x11708496
  • ChangLK, WeiTT, ChiuYF, et al. Inhibition of Epstein-Barr virus lytic cycle by (-)-epigallocatechin gallate. Biochem Biophys Res Commun. 2003;301(4):1062–1068. doi:10.1016/s0006-291x(03)00067-612589821
  • LiuS, LiH, ChenL, et al. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells. Carcinogenesis. 2013;34(3):627–637. doi:10.1093/carcin/bgs36423180656
  • HamzaA, ZhanCG. How can (-)-epigallocatechin gallate from green tea prevent HIV-1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors. J Phys Chem B. 2006;110(6):2910–2917. doi:10.1021/jp055076216471901
  • ZhangHS, WuTC, SangWW, RuanZ. EGCG inhibits Tat-induced LTR transactivation: role of Nrf2, AKT, AMPK signaling pathway. Life Sci. 2012;90(19–20):747–754. doi:10.1016/j.lfs.2012.03.01322480519
  • WilliamsonMP, McCormickTG, NanceCL, ShearerWT. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy. J Allergy Clin Immunol. 2006;118(6):1369–1374. doi:10.1016/j.jaci.2006.08.01617157668
  • CastellanoLM, HammondRM, HolmesVM, WeissmanD, ShorterJ. Epigallocatechin-3-gallate rapidly remodels PAP85-120, SEM1(45–107), and SEM2(49–107) seminal amyloid fibrils. Biol Open. 2015;4(9):1206–1212. doi:10.1242/bio.01021526319581
  • DuanJM, QiuJY, TanSY, LiuSW, LiL. [Semen-derived enhancer of viral infection–a key factor in sexual transmission of HIV]. Bing Du Xue Bao. 2012;28(1):84–88. Chinese.22416356
  • HauberI, HohenbergH, HolstermannB, HunsteinW, HauberJ. The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection. Proc Natl Acad Sci U S A. 2009;106(22):9033–9038. doi:10.1073/pnas.081182710619451623
  • LiS, HattoriT, KodamaEN. Epigallocatechin gallate inhibits the HIV reverse transcription step. Antivir Chem Chemother. 2011;21(6):239–243. doi:10.3851/IMP177421730371
  • LiuS, LuH, ZhaoQ, et al. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim Biophys Acta. 2005;1723(1–3):270–281. doi:10.1016/j.bbagen.2005.02.01215823507
  • WangYF, ShaoSH, XuP, YangXQ, QianLS. Catechin-enriched green tea extract as a safe and effective agent for antimicrobial and anti-inflammatory treatment. Afr J Pharm Pharmacol. 2011;5:1452–1461. doi:10.5897/AJPP11.164
  • KuzuharaT, IwaiY, TakahashiH, HatakeyamaD, EchigoN. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr. 2009;1:RRN1052. doi:10.1371/currents.rrn105220025206
  • KimM, KimSY, LeeHW, et al. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antiviral Res. 2013;100(2):460–472. doi:10.1016/j.antiviral.2013.08.00223954192
  • LingJX, WeiF, LiN, et al. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol Sin. 2012;33(12):1533–1541. doi:10.1038/aps.2012.8022941291
  • SongJM, LeeKH, SeongBL. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res. 2005;68(2):66–74. doi:10.1016/j.antiviral.2005.06.01016137775
  • HeX, GaoB, ZhouL, XiongS. Green tea polyphenol epigallocatechin-3-gallate-alleviated coxsackievirus B3-induced myocarditis through inhibiting viral replication but not through inhibiting inflammatory responses. J Cardiovasc Pharmacol. 2017;69(1):41–47. doi:10.1097/FJC.000000000000043927753702
  • HoHY, ChengML, WengSF, LeuYL, ChiuDT. Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem. 2009;57(14):6140–6147. doi:10.1021/jf901128u19537794
  • CarneiroBM, BatistaMN, BragaACS, NogueiraML, RahalP. The green tea molecule EGCG inhibits Zika virus entry. Virology. 2016;496:215–218. doi:10.1016/j.virol.2016.06.01227344138
  • WeberC, SlivaK, von RheinC, KümmererBM, SchnierleBS. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res. 2015;113:1–3. doi:10.1016/j.antiviral.2014.11.00125446334
  • LuJW, HsiehPS, LinCC, et al. Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochem Biophys Res Commun. 2017;491(3):595–602. doi:10.1016/j.bbrc.2017.07.15728760340
  • Vazquez-CalvoÁ, Jiménez de OyaN, Martín-AcebesMA, Garcia-MorunoE, SaizJC. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and Dengue virus. Front Microbiol. 2017;8:1314. doi:10.3389/fmicb.2017.0131428744282
  • SuS, WongG, ShiW, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490–502. doi:10.1016/j.tim.2016.03.00327012512
  • ZhouP, YangXL, WangXG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-732015507
  • WeissSR, Navas-MartinS. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–664. doi:10.1128/MMBR.69.4.635-664.200516339739
  • MhatreS, SrivastavaT, NaikS, PatravaleV. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review. Phytomedicine. 2021;85:153286. doi:10.1016/j.phymed.2020.15328632741697
  • MenegazziM, CampagnariR, BertoldiM, CrupiR, Di PaolaR, CuzzocreaS. Protective effect of epigallocatechin-3-gallate (EGCG) in diseases with uncontrolled immune activation: could such a scenario be helpful to counteract COVID-19? Int J Mol Sci. 2020;21(14):5171. doi:10.3390/ijms21145171
  • MendoncaP, SolimanKFA. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity. Antioxidants. 2020;9(8):659. doi:10.3390/antiox9080659
  • SinghS, SkMF, SonawaneA, KarP, SadhukhanS. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2020;28:1–16. doi:10.1080/07391102.2020.1796810
  • SagaamaA, BrandanSA, Ben IssaT, IssaouiN. Searching potential antiviral candidates for the treatment of the 2019 novel coronavirus based on DFT calculations and molecular docking. Heliyon. 2020;6(8):e04640. doi:10.1016/j.heliyon.2020.e0464032802981
  • JangM, ParkYI, ChaYE, et al. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med. 2020;2020:5630838. doi:10.1155/2020/563083832963564
  • SharmaS, DeepS. In-silico drug repurposing for targeting SARS-CoV-2 main protease (Mpro). J Biomol Struct Dyn. 2020;12:1–8. doi:10.1080/07391102.2020.1844058
  • MhatreS, NaikS, PatravaleV. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput Biol Med. 2021;129:104137. doi:10.1016/j.compbiomed.2020.10413733302163
  • ZhuY, XieDY. Docking characterization and in vitro inhibitory activity of flavan-3-ols and dimeric proanthocyanidins against the main protease activity of SARS-Cov-2. Front Plant Sci. 2020;11:601316. doi:10.3389/fpls.2020.60131633329667
  • WangT, ZhaoM, YeP, WangQ, ZhaoY. Integrated bioinformatics analysis for the screening of associated pathways and therapeutic drugs in coronavirus disease 2019. Arch Med Res. 2021;52(3):304–310. doi:10.1016/j.arcmed.2020.11.00933309308
  • ChiouWC, ChenJC, ChenYT, et al. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochem Biophys Res Commun. 2021. doi:10.1016/j.bbrc.2020.12.106
  • DuA, ZhengR, DisomaC, et al. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol. 2021;176:1–12. doi:10.1016/j.ijbiomac.2021.02.01233548314
  • JangM, ParkR, ParkYI, et al. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochem Biophys Res Commun. 2021;547:23–28. doi:10.1016/j.bbrc.2021.02.01633588235
  • ChourasiaM, KoppulaPR, BattuA, OusephMM, SinghAK. EGCG, a green tea catechin, as a potential therapeutic agent for symptomatic and asymptomatic SARS-CoV-2 infection. Molecules. 2021;26(5):1200. doi:10.3390/molecules2605120033668085
  • HenssL, AusteA, SchürmannC, et al. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J Gen Virol. 2021;102(4):001574. doi:10.1099/jgv.0.001574
  • ParkJ, ParkR, JangM, ParkYI. Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases. Life. 2021;11(3):197. doi:10.3390/life1103019733806274
  • LambertJD, LeeMJ, LuH, et al. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr. 2003;133(12):4172–4177. doi:10.1093/jn/133.12.417214652367
  • NakagawaK, MiyazawaT. Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol. 1997;43(6):679–684. doi:10.3177/jnsv.43.6799530620
  • HollmanPC, TijburgLB, YangCS. Bioavailability of flavonoids from tea. Crit Rev Food Sci Nutr. 1997;37(8):719–738. doi:10.1080/104083997095277999447272
  • YangCS, LeeMJ, ChenL. Human salivary tea catechin levels and catechin esterase activities: implication in human cancer prevention studies. Cancer Epidemiol Biomarkers Prev. 1999;8(1):83–89.9950244
  • LiY, RenB, PengX, et al. Saliva is a non-negligible factor in the spread of COVID-19. Mol Oral Microbiol. 2020;35(4):141–145. doi:10.1111/omi.1228932367576
  • OhgitaniE, Shin-YaM, IchitaniM, et al. Rapid inactivation in vitro of SARS-CoV-2 in saliva by black tea and green tea. Pathogens. 2021;10(6):721. doi:10.3390/pathogens1006072134201131