352
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Quercetin Prevents Oxidative Stress-Induced Injury of Periodontal Ligament Cells and Alveolar Bone Loss in Periodontitis

, , , , , & show all
Pages 3509-3522 | Published online: 12 Aug 2021

References

  • KassebaumNJ, BernabeE, DahiyaM, BhandariB, MurrayCJ, MarcenesW. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93:1045–1053. doi:10.1177/002203451455249125261053
  • SczepanikFSC, GrossiML, CasatiM, et al. Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontol. 2020;2000(84):45–68. doi:10.1111/prd.12342
  • HirschfeldJWP, MilwardMR, CooperPR, ChappleILC. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infect Immun. 2017;85:e00297–00217. doi:10.1128/IAI.00297-1728947649
  • WangY, AndrukhovO, Rausch-FanX. Oxidative stress and antioxidant system in periodontitis. Front Physiol. 2017;8:1–13. doi:10.3389/fphys.2017.0091028154536
  • ChenM, CaiW, ZhaoS, et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: a systematic review and meta-analysis. J Clin Periodontol. 2019;46:608–622. doi:10.1111/jcpe.1311230989678
  • Almerich-SillaJM, Montiel-CompanyJM, PastorS, SerranoF, Puig-SillaM, DasiF. Oxidative Stress parameters in saliva and its association with periodontal disease and types of bacteria. Dis Markers. 2015;2015:1–7.
  • LiuC, MoL, NiuY, LiX, ZhouX, XuX. The role of reactive oxygen species and autophagy in periodontitis and their potential linkage. Front Physiol. 2017;8:1–13. doi:10.3389/fphys.2017.0043928154536
  • KanzakiH, WadaS, NarimiyaT, et al. Pathways that regulate ROS scavenging enzymes, and their role in defense against tissue destruction in periodontitis. Front Physiol. 2017;8:1–8. doi:10.3389/fphys.2017.0035128154536
  • TomokiyoA, WadaN, MaedaH. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28(15):974–985. doi:10.1089/scd.2019.003131215350
  • ChenH, HuangX, FuC, et al. Recombinant klotho protects human periodontal ligament stem cells by regulating mitochondrial function and the antioxidant system during H2O2-induced oxidative stress. Oxid Med Cell Longev. 2019;2019:1–14.
  • MeiYM, LiL, WangXQ, et al. AGEs induces apoptosis and autophagy via reactive oxygen species in human periodontal ligament cells. J Cell Biochem. 2019;121(8–9):3764–3779.
  • ChenY, JiY, JinX, et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress. Biochem Biophys Res Commun. 2019;509:483–490. doi:10.1016/j.bbrc.2018.12.14330595386
  • XiongY, ZhaoB, ZhangW, JiaL, ZhangY, XuX. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway. Iran J Basic Med Sci. 2020;23:954–960.32774819
  • CostaFPD, PutyB, NogueiraLS, et al. Piceatannol increases antioxidant defense and reduces cell death in human periodontal ligament fibroblast under oxidative stress. Antioxidants (Basel). 2019;9:1–14.
  • XuD, HuMJ, WangYQ, CuiYL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019;24:1–15.
  • D’AndreaG. Quercetin: a flavonol with multifaceted therapeutic applications?Fitoterapia. 2015;106:256–271. doi:10.1016/j.fitote.2015.09.01826393898
  • SharmaS, RajK, SinghS. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced Parkinson’s disease in experimental rats. Neurotox Res. 2020;37:198–209. doi:10.1007/s12640-019-00120-z31654381
  • KhanH, UllahH, AschnerM, CheangWS, AkkolEK. Neuroprotective Effects of quercetin in Alzheimer’s disease. Biomolecules. 2019;10:1–20. doi:10.3390/biom10010059
  • XiongG, JiW, WangF, et al. Quercetin inhibits inflammatory response induced by LPS from porphyromonas gingivalis in human gingival fibroblasts via suppressing NF-kappaB signaling pathway. Biomed Res Int. 2019;2019:1–10.
  • NapimogaMH, Clemente-NapimogaJT, MacedoCG, et al. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model. J Nat Prod. 2013;76:2316–2321. doi:10.1021/np400691n24246038
  • ChandraA, LagnadoAB, FarrJN, et al. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J Bone Miner Res. 2020;35(6):1119–1131. doi:10.1002/jbmr.397832023351
  • PanC, LiuJ, WangH, SongJ, TanL, ZhaoH. Porphyromonas gingivalis can invade periodontal ligament stem cells. BMC Microbiol. 2017;17:38. doi:10.1186/s12866-017-0950-528212613
  • FuJ, HaoL, TianY, LiuY, GuY, WuJ. miR-199a-3p is involved in estrogen-mediated autophagy through the IGF-1/mTOR pathway in osteocyte-like MLO-Y4 cells. J Cell Physiol. 2018;233:2292–2303. doi:10.1002/jcp.2610128708244
  • WuW, FuJ, GuY, WeiY, MaP, WuJ. JAK2/STAT3 regulates estrogen-related senescence of bone marrow stem cells. J Endocrinol. 2020;245:141–153. doi:10.1530/JOE-19-051832045363
  • AiZ, WuY, YuM, LiJ, LiS. Theaflavin-3, 3ʹ-Digallate suppresses RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss in mice. Front Pharmacol. 2020;11:1–12. doi:10.3389/fphar.2020.0080332116689
  • DíazCM, BullonB, Ruiz‐SalmerónRJ, et al. Molecular inflammation and oxidative stress are shared mechanisms involved in both myocardial infarction and periodontitis. J Periodontal Res. 2020;55:519–528. doi:10.1111/jre.1273932106337
  • ZukowskiP, MaciejczykM, WaszkielD. Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol. 2018;92:8–17. doi:10.1016/j.archoralbio.2018.04.01829729478
  • KumarJ, TeohSL, DasS, MahakknaukrauhP. Oxidative stress in oral diseases: understanding its relation with other systemic diseases. Front Physiol. 2017;8:693. doi:10.3389/fphys.2017.0069328959211
  • TianJ, GuL, AdamsA, WangX, HuangR. Pellino-1 protects periodontal ligament stem cells against H2O2-induced apoptosis via activation of NF-kappaB signaling. Mol Biotechnol. 2018;60:533–538. doi:10.1007/s12033-018-0067-629860626
  • KookSH, LeeD, ChoES, et al. Activation of canonical Wnt/beta-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Mol Cell Biochem. 2016;411:83–94. doi:10.1007/s11010-015-2570-426369531
  • TsikasD. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524:13–30. doi:10.1016/j.ab.2016.10.02127789233
  • Dinkova-KostovaAT, TalalayP. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys. 2010;501:116–123. doi:10.1016/j.abb.2010.03.01920361926
  • ChangC, WorleyBL, PhaetonR, HempelN. Extracellular glutathione peroxidase GPx3 and its role in cancer. Cancers (Basel). 2020;12:1–19. doi:10.3390/cancers12082197
  • GlorieuxC, CalderonPB. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem. 2017;398:1095–1108. doi:10.1515/hsz-2017-013128384098
  • BorgstahlGEO, Oberley-DeeganRE. Superoxide Dismutases (SODs) and SOD mimetics. Antioxidants (Basel). 2018;7:1–3.
  • HarderB, JiangT, WuT, et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans. 2015;43:680–686. doi:10.1042/BST2015002026551712
  • LiX, SunX, ZhangX, et al. Enhanced oxidative damage and Nrf2 downregulation contribute to the aggravation of periodontitis by diabetes mellitus. Oxid Med Cell Longev. 2018;2018:1–11.
  • LiuY, YangH, WenY, et al. Nrf2 inhibits periodontal ligament stem cell apoptosis under excessive oxidative stress. Int J Mol Sci. 2017;18:1–16. doi:10.3390/ijms18051076
  • SimaC, AboodiGM, LakschevitzFS, SunC, GoldbergMB, GlogauerM. Nuclear factor Erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis. Am J Pathol. 2016;186:1417–1426. doi:10.1016/j.ajpath.2016.01.01327070823
  • BhattaraiG, PoudelSB, KookSH, LeeJC. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016;29:398–408. doi:10.1016/j.actbio.2015.10.03126497626
  • JiaL, XiongY, ZhangW, MaX, XuX. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp Cell Res. 2020;386:1–12. doi:10.1016/j.yexcr.2019.111717
  • PartridgeL, FuentealbaM, KennedyBK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020;19:513–532.32467649
  • ShaoY, YangY, LiM, HangL, XuX. A solid dispersion of quercetin shows enhanced Nrf2 activation and protective effects against oxidative injury in a mouse model of dry age-related macular degeneration. Oxid Med Cell Longev. 2019;7:1–12.
  • Granado-SerranoAB, MartinMA, BravoL, GoyaL, RamosS. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: involvement of p38. Chem Biol Interact. 2012;195:154–164. doi:10.1016/j.cbi.2011.12.00522197970
  • BenkafadarN, FrancoisF, AffortitC, et al. ROS-induced activation of DNA damage responses drives senescence-like state in postmitotic cochlear cells: implication for hearing preservation. Mol Neurobiol. 2019;56:5950–5969. doi:10.1007/s12035-019-1493-630693443
  • Hernandez-SeguraA, NehmeJ, DemariaM. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–453. doi:10.1016/j.tcb.2018.02.00129477613
  • HerbigU, ChenB, ChenBPC, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol Cell. 2004;14:501–513. doi:10.1016/S1097-2765(04)00256-415149599
  • Aquino-MartinezR, EckhardtBA, RowseyJL, et al. Senescent cells exacerbate chronic inflammation and contribute to periodontal disease progression in old mice. J Periodontol. 2020;1–13. doi:10.1002/JPER.20-052932997353