181
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Dual-Functional Peptide Driven Liposome Codelivery System for Efficient Treatment of Doxorubicin-Resistant Breast Cancer

ORCID Icon, , , & ORCID Icon
Pages 3223-3239 | Published online: 27 Jul 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.2159031912902
  • MielczarekL, KrugP, MazurM, et al. In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int J Pharm. 2019;558:311–318. doi:10.1016/j.ijpharm.2019.01.00830641176
  • ZouLL, DingWP, ZhangYY, et al. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin. Biomaterials. 2018;182:1–12. doi:10.1016/j.biomaterials.2018.08.01330096444
  • TangJ, WangQ, YuQ, et al. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery. Acta Biomater. 2019;83:379–389. doi:10.1016/j.actbio.2018.11.00230395963
  • XuHB, ShenFM, LvQZ. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner. Eur J Pharmacol. 2016;776:1–8. doi:10.1016/j.ejphar.2016.02.03526879869
  • TianJY, GuoFG, ChenYY, et al. Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Lett. 2019;448:1–10. doi:10.1016/j.canlet.2019.01.00230673592
  • KimH, YimG, KimY. Celecoxib and paclitaxel synergistically induce apoptosis in the human ovarian cancer cell line OVCAR-3. Gynecol Oncol. 2013;130(1):126–132. doi:10.1016/j.ygyno.2013.04.362
  • MengXY, ZhangQ, ZhengGB, et al. Doxorubicin combined with celecoxib inhibits tumor growth of medullary thyroid carcinoma in xenografted mice. Oncol Lett. 2014;7(6):2053–2058. doi:10.3892/ol.2014.205024932288
  • ChenC, XuW, WangCM. Combination of celecoxib and doxorubicin increases growth inhibition and apoptosis in acute myeloid leukemia cells. Leuk Lymphoma. 2013;54(11):2517–2522. doi:10.3109/10428194.2013.78117023452119
  • KozluS, SahinA, UltavG, et al. Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles. J Drug Deliv Sci Technol. 2018;45:213–219. doi:10.1016/j.jddst.2018.02.004
  • FantappièO, SolazzoM, LasagnaN, PlatiniF, TessitoreL, MazzantiR. P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines. Cancer Res. 2007;67(10):4915–4923.17510421
  • HuangL, WangC, ZhengW, et al. Effects of celecoxib on the reversal of multidrug resistance in human gastric carcinoma by downregulation of the expression and activity of P-glycoprotein. Anticancer Drugs. 2007;18(9):1075–1080. doi:10.1097/CAD.0b013e3281c49d7a17704658
  • SungMW, LeeDY, ParkSW, et al. Celecoxib enhances the inhibitory effect of 5‐FU on human squamous cell carcinoma proliferation by ROS production. Laryngoscope. 2016;127(4):E117–E123.27666139
  • SoukupováK, RudolfE. Suppression of proliferation and activation of cell death by sodium selenite involves mitochondria and lysosomes in chemoresistant bladder cancer cells. J Trace Elem Med Biol. 2019;52:58–67. doi:10.1016/j.jtemb.2018.11.00930732900
  • GuoZ, SevrioukovaIF, DenisovIG, et al. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chem Biol. 2017;24(10):1259–1275.e6. doi:10.1016/j.chembiol.2017.08.00928919040
  • LiSY, ChengH, XieBR, et al. Mitochondria targeted cancer therapy using ethidium derivatives. Mater Today Chem. 2017;6:34–44. doi:10.1016/j.mtchem.2017.09.002
  • ZhaoYJ, SunLM, WangRR, et al. The effects of mitochondria-associated long noncodings RNAs in cancer mitochondria: new players in an old arena. Crit Rev Oncol Hematol. 2018;131:76–82. doi:10.1016/j.critrevonc.2018.08.00530293709
  • CopoloviciDM, LangelK, EristeE, et al. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–1994. doi:10.1021/nn405726924559246
  • WalrantA, CardonS, BurlinaF, et al. Membrane crossing and membranotropic activity of cell-penetrating peptides: dangerous liaisons? Acc Chem Res. 2017;50(12):2968–2975. doi:10.1021/acs.accounts.7b0045529172443
  • FreireJM, VeigaAS, InêsR, et al. Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action. Febs J. 2014;281(1):191–215. doi:10.1111/febs.1258724286593
  • AhmedKS, ShanXT, MaoJ, et al. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater Sci Eng C Mater Biol Appl. 2019;99:1448–1458. doi:10.1016/j.msec.2019.02.09530889679
  • YuJ, LiW, YuD. Atrial natriuretic peptide modified oleate adenosine prodrug lipid nanocarriers for the treatment of myocardial infarction: in vitro and in vivo evaluation. Drug Des Devel Ther. 2018;12:1697–1706. doi:10.2147/DDDT.S166749
  • IdenDL, AllenTM. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochim Biophys Acta Biomembr. 2001;1513(2):207–216. doi:10.1016/S0005-2736(01)00357-1
  • SongSX, LiuD, PengJJ, et al. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int J Pharm. 2008;363(1):155–161. doi:10.1016/j.ijpharm.2008.07.01218692120
  • LiCL, CuiJX, WangCX, et al. Development of pegylated liposomal vinorelbine formulation using “post-insertion” technology. Int J Pharm. 2010;391(1):230–236. doi:10.1016/j.ijpharm.2010.03.00420214962
  • SilvermanL, BarenholzY. In vitro experiments showing enhanced release of doxorubicin from doxil® in the presence of ammonia may explain drug release at tumor site. Nanomedicine. 2015;11(7):1841–1850. doi:10.1016/j.nano.2015.06.00726115641
  • FetihG, FathallaD, El-BadryM. Liposomal gels for site-specific, sustained delivery of celecoxib: in vitro and in vivo evaluation. Drug Dev Res. 2014;75(4):257–266. doi:10.1002/ddr.2117924939834
  • ScadutoRC, GrotyohannLW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76(1):469–477. doi:10.1016/S0006-3495(99)77214-09876159
  • SzwedM, Laroche-ClaryA, RobertJ, et al. Efficacy of doxorubicin-transferrin conjugate in apoptosis induction in human leukemia cells through reactive oxygen species generation. Cell Oncol. 2016;39(2):107–118. doi:10.1007/s13402-015-0256-2
  • YinJ, GuoJB, ZhangQ, et al. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicol in Vitro. 2018;51:1–10. doi:10.1016/j.tiv.2018.05.00129729358
  • WangJS, HoFM, KangHC, et al. Celecoxib induces heme oxygenase-1 expression in macrophages and vascular smooth muscle cells via ROS-dependent signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(2):159–168. doi:10.1007/s00210-010-0586-621174079
  • MaM, YangX, ZhaoL, et al. Celecoxib enhances sensitivity to chemotherapy drugs of T-cell lymphoma. Oncol Lett. 2018;15(4):4649–4656.29541237
  • LisaS, TejaswiV, FatemehM, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6(127):27–31.25755641
  • KalyaneD, RavalN, MaheshwariR, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252–1276. doi:10.1016/j.msec.2019.01.06630813007
  • SabetiB, NoordinMI, MohdS, et al. Development and characterization of liposomal doxorubicin hydrochloride with palm oil. Biomed Res Int. 2014;2014:765426. doi:10.1155/2014/76542624795894
  • SilvermanL, BarenholzY. In vitro experiments showing enhanced release of doxorubicin from doxil in the presence of ammonia may explain drug release at tumor site. Nanomedicine. 2015;11(7):31–52.
  • AhmedKS, HusseinSA, AliAH, et al. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2018;27:1–58.29564914
  • FarzanehH, EbrahimiNM, MashreghiM, et al. A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: from liposomal preparation to therapy. Int J Pharm. 2018;551(1):300–308. doi:10.1016/j.ijpharm.2018.09.04730243944
  • KhalilIA, KogureK, FutakiS, et al. Octaarginine-modified liposomes: enhanced cellular uptake and controlled intracellular trafficking. Int J Pharm. 2008;354(1):39–48. doi:10.1016/j.ijpharm.2007.12.00318242018
  • KitagishiH, HataDS, ItakuraT, et al. Cellular uptake of octaarginine-conjugated tetraarylporphyrin included by per-O-methylated β-cyclodextrin. Org Biomol Chem. 2013;11(19):3203–3211. doi:10.1039/c3ob27248f23584796
  • VarkouhiAK, ScholteM, StormG, et al. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–228. doi:10.1016/j.jconrel.2010.11.00421078351
  • MoreiraC, OliveiraH, PiresLR, et al. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater. 2009;5(8):2995–3006. doi:10.1016/j.actbio.2009.04.02119427930
  • WangY, WeinerH. The presequence of rat liver aldehyde dehydrogenase requires the presence of an alpha-helix at its N-terminal region which is stabilized by the helix at its C termini. J Biol Chem. 1993;268(7):4759–4765. doi:10.1016/S0021-9258(18)53462-18383124
  • LinR, ZhangP, CheethamAG, et al. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug Chem. 2015;26(1):71–77. doi:10.1021/bc500408p25547808
  • PerrySW, NormanJP, BarbieriJ, et al. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98–115. doi:10.2144/00011361021486251
  • AnthonyM, HongY, KempBK, et al. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;1:126–138.
  • QiuL, QiaoMX, ChenQ, et al. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials. 2014;35(37):9877–9887. doi:10.1016/j.biomaterials.2014.08.00825201738
  • WartenbergM, LingFC, SchallenbergM, et al. Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem. 2001;276(20):17420–17428. doi:10.1074/jbc.M10014120011279018
  • WartenbergM, HoffmannE, SchwindtH, et al. Reactive oxygen species-linked regulation of the multidrug resistance transporter p-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett. 2005;579(20):4541–4549. doi:10.1016/j.febslet.2005.06.07816083877
  • PritchardR, Rodríguez-EnríquezS, Pacheco-VelázquezSC, et al. Celecoxib inhibits mitochondrial O2 consumption, promoting ros dependent death of murine and human metastatic cancer cells via the apoptotic signalling pathway. Biochem Pharmacol. 2018;154:318–334. doi:10.1016/j.bcp.2018.05.01329800556