142
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide

, ORCID Icon, &
Pages 5151-5164 | Published online: 24 Dec 2021

References

  • AmentW, VerkerkeGJ. Exercise and fatigue. Sports Med. 2009;39(5):389–422. doi:10.2165/00007256-200939050-0000519402743
  • WanJ, QinZ, WangP, et al. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49(10):e384–e384. doi:10.1038/emm.2017.19428983090
  • PooleDC, CoppSW, ColburnTD, et al. Guidelines for animal exercise and training protocols for cardiovascular studies. Am J Physiol Heart C. 2020;318(5):H1100–H1138. doi:10.1152/ajpheart.00697.2019
  • RuheeRT, MaS, SuzukiK. Protective effects of sulforaphane on exercise-induced organ damage via inducing antioxidant defense responses. Antioxidants. 2020;9(2):136. doi:10.3390/antiox9020136
  • SuzukiK, TominagaT, RuheeRT, et al. Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress. Antioxidants. 2020;9(5):401. doi:10.3390/antiox9050401
  • SrivastavaKK, KumarR. Stress, oxidative injury and disease. Indian J Clin Biochem. 2015;30(1):3–10. doi:10.1007/s12291-014-0441-525646036
  • LoboV, PatilA, PhatakA, et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118. doi:10.4103/0973-7847.7090222228951
  • Santos-SánchezNF, Salas-CoronadoR, Villanueva-CañongoC, et al. Antioxidant Compounds and Their Antioxidant Mechanism. London, UK: IntechOpen; 2019. doi:10.5772/intechopen.85270
  • MatesJM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000;153(1–3):83–104. doi:10.1016/s0300-483x(00)00306-111090949
  • HacısevkiA. An overview of ascorbic acid biochemistry. J Fac Pharm Ankara Univ. 2009;38(3):233–255. doi:10.1501/Eczfak_0000000528
  • ArrigoniO, De TullioMC. Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta. 2002;1569(1–3):1–9. doi:10.1016/S0304-4165(01)00235-511853951
  • RouhierN, LemaireSD, JacquotJP. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol. 2008;59:143–166. doi:10.1146/annurev.arplant.59.032607.09281118444899
  • BindhumolV, ChitraKC, MathurPP. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology. 2003;188(2–3):117–124. doi:10.1016/S0300-483X(03)00056-812767684
  • DuarteTL, LunecJ. When is an antioxidant not an antioxidant? A review of novel actions and reactions of Vitamin C. Free Radic Res. 2005;39(7):671–686. doi:10.1080/1071576050010402516036346
  • ÇatalolukO, GogebakanB. Presence of drug resistance in intestinal lactobacilli of dairy and human origin in Turkey. FEMS Microbiol Lett. 2004;236(1):7–12. doi:10.1111/j.1574-6968.2004.tb09620.x15212784
  • AoX, PuB, CaiY. Research progress of Lactobacillus fermentum and its probiotic characteristics. J Food Sci Biotechnol. 2015;2:1211127.
  • MikelsaarM, ZilmerM. Lactobacillus fermentum ME-3–an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis. 2009;21(1):1–27. doi:10.1080/0891060090281556119381356
  • WangAN, YiXW, YuHF, et al. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing–finishing pigs. J Appl Microbiol. 2009;107(4):1140–1148. doi:10.1111/j.1365-2672.2009.04294.x19486423
  • LiuB, ZhangJ, YiR, et al. Preventive effect of Lactobacillus fermentum CQPC08 on 4-nitroquineline-1-oxide induced tongue cancer in C57BL/6 mice. Foods. 2019;8(3):93. doi:10.3390/foods8030093
  • LongX, SunF, WangZ, et al. Lactobacillus fermentum CQPC08 protects rats from lead-induced oxidative damage by regulating the Keap1/Nrf2/ARE pathway. Food Funct. 2021;12(13):6029–6044. doi:10.1039/D1FO00589H34037025
  • KrumbeckJA, RasmussenHE, HutkinsRW, et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome. 2018;6(1):1–16. doi:10.1186/s40168-018-0494-429291746
  • MohajeriMH, BrummerRJM, RastallRA, et al. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr. 2018;57(1):1–14. doi:10.1007/s00394-018-1703-4
  • KerryRG, PatraJK, GoudaS, et al. Benefaction of probiotics for human health: a review. J Food Drug Anal. 2018;26(3):927–939. doi:10.1016/j.jfda.2018.01.00229976412
  • El-GendyKS, AlyNM, MahmoudFH, et al. The role of vitamin C as antioxidant in protection of oxidative stress induced by imidacloprid. Food Chem Toxicol. 2010;48(1):215–221. doi:10.1016/j.fct.2009.10.00319833166
  • AlyN, KawtherELG, MahmoudF, et al. Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice. Pestic Biochem Phys. 2010;97(1):7–12. doi:10.1016/j.pestbp.2009.11.007
  • SuhMG, BaeGY, JoK, et al. Photoprotective effect of dietary Galacto-Oligosaccharide (GOS) in hairless mice via regulation of the MAPK signaling pathway. Molecules. 2020;25(7):1679. doi:10.3390/molecules25071679
  • CastroB, KuangS. Evaluation of muscle performance in mice by treadmill exhaustion test and whole-limb grip strength assay. Bio-Protoc. 2017;7(8). doi:10.21769/BioProtoc.2237
  • MaS, HuangQ, TominagaT, et al. An 8-week ketogenic diet alternated interleukin-6, ketolytic and lipolytic gene expression, and enhanced exercise capacity in mice. Nutrients. 2018;10(11):1696. doi:10.3390/nu10111696
  • PanY, WangH, TanF, et al. Lactobacillus plantarum KFY02 enhances the prevention of CCl4-induced liver injury by transforming geniposide into genipin to increase the antioxidant capacity of mice. J Func Foods. 2020;73:104128. doi:10.1016/j.jff.2020.104128
  • SimioniC, ZauliG, MartelliAM, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9(24):17181. doi:10.18632/oncotarget.2472929682215
  • KawamuraT, MuraokaI. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants. 2018;7(9):119. doi:10.3390/antiox7090119
  • HsuYJ, HuangWC, ChiuCC, et al. Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients. 2016;8(10):648. doi:10.3390/nu8100648
  • ChaiG, WangY, WuJ, et al. Study on the recognition of exercise intensity and fatigue on runners based on subjective and objective information. In: Healthcare. Vol. 7. No. 4. Multidiscip Digit Publishing I; 2019:150. doi:10.3390/healthcare7040150
  • RepettoM, SemprineJ, BoverisA. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. Lipid Peroxid. 2012;1:3–30. doi:10.5772/45943
  • XieQ, SunY, CaoL, et al. Antifatigue and antihypoxia activities of oligosaccharides and polysaccharides from Codonopsis pilosula in mice. Food Funct. 2020;11(7):6352–6362. doi:10.1039/D0FO00468E32608442
  • TheofilidisG, BogdanisGC, KoutedakisY, et al. Monitoring exercise-induced muscle fatigue and adaptations: making sense of popular or emerging indices and biomarkers. Sports. 2018;6(4):153. doi:10.3390/sports6040153
  • NiW, GaoT, WangH, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants. J Ethnopharmacol. 2013;150(2):529–535. doi:10.1016/j.jep.2013.08.05524036063
  • SkugorS, HolmHJ, BjellandAK, et al. Nutrigenomic effects of glucosinolates on liver, muscle and distal kidney in parasite-free and salmon louse infected Atlantic salmon. Parasit Vector. 2016;9(1):1–17. doi:10.1186/s13071-016-1921-7
  • KimNI, KimSJ, JangJH, et al. Changes in fatigue recovery and muscle damage enzymes after deep-sea water thalassotherapy. App Sci. 2020;10(23):8383. doi:10.3390/app10238383
  • PowersSK, JacksonMJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–1276. doi:10.1152/physrev.00031.200718923182
  • IghodaroOM, AkinloyeOA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287–293. doi:10.1016/j.ajme.2017.09.001
  • MaX, DengD, ChenW. Inhibitors and Activators of SOD, GSH‐Px, and CAT. Enzyme Inhibitors Activators. 2017;29:207. doi:10.5772/65936
  • MuradianKK, UtkoNA, FraifeldV, et al. Superoxide dismutase, catalase and glutathione peroxidase activities in the liver of young and old mice: linear regression and correlation. Arch Gerontol Geriat. 2002;35(3):205–214. doi:10.1016/S0167-4943(02)00025-0
  • SteinbacherP, EcklP. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5(2):356–377. doi:10.3390/biom502035625866921
  • GilP, FariñasF, CasadoA, et al. Malondialdehyde: a possible marker of ageing. Gerontology. 2002;48(4):209–214. doi:10.1159/00005835212053109
  • BiswasSK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev. 2016;2016:1–9. doi:10.1155/2016/5698931
  • PercivalJM. nNOS regulation of skeletal muscle fatigue and exercise performance. Biophyl Rev. 2011;3(4):209–217. doi:10.1007/s12551-011-0060-9
  • FörstermannU, SessaWC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837. doi:10.1093/eurheartj/ehr30421890489
  • TerrandoN, MonacoC, MaD, et al. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci. 2010;107(47):20518–20522. doi:10.1073/pnas.101455710721041647
  • WojdasiewiczP, PoniatowskiŁA, SzukiewiczD. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm. 2014;2014:561459. doi:10.1155/2014/561459
  • TanakaT, NarazakiM, KishimotoT. IL-6 in inflammation, immunity, and disease. CSH Perspect Biol. 2014;6(10):a016295. doi:10.1101/cshperspect.a016295
  • SuzukiK. Characterization of exercise-induced cytokine release, the impacts on the body, the mechanisms and modulations. Int J Sports Exerc Med. 2019;5:1–13. doi:10.23937/2469-5718/1510122
  • SuzukiK. Cytokine response to exercise and its modulation. Antioxidants. 2018;7(1):17. doi:10.3390/antiox7010017
  • SuzukiK, NakajiS, YamadaM, et al. Systemic inflammatory response to exhaustive exercise. Cytokine Kinet Exerc Immunol. 2002;8:6–48.
  • JaeschkeH. Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol. 2006;290(6):G1083–G1088. doi:10.1152/ajpgi.00568.200516687579
  • SharfuddinAA, MolitorisBA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200. doi:10.1038/nrneph.2011.1621364518
  • LuissintAC, ParkosCA, NusratA. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology. 2016;151(4):616–632. doi:10.1053/j.gastro.2016.07.00827436072
  • JeurinkPV, EschBCV, RijnierseA, et al. Mechanisms underlying immune effects of dietary oligosaccharides. Am J Clin Nutr. 2013;98(2):572S–577S. doi:10.3945/ajcn.112.03859623824724
  • XingY, LiK, XuY, et al. Effects of galacto-oligosaccharide on growth performance, feacal microbiota, immune response and antioxidant capability in weaned piglets. J Appl Anim Res. 2020;48(1):63–69. doi:10.1080/09712119.2020.1732394