461
Views
53
CrossRef citations to date
0
Altmetric
Original Research

Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway

, , , , & ORCID Icon
Pages 3207-3221 | Published online: 21 Jul 2021

References

  • ZhangL, LongJ, JiangW, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–906. doi:10.1056/NEJMc160246927579659
  • PalmerSC, MavridisD, NavareseE, et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet. 2015;385(9982):2047–2056. doi:10.1016/S0140-6736(14)62459-426009228
  • NiZ, GuoL, LiuF, OlatunjiOJ, YinM. Allium tuberosum alleviates diabetic nephropathy by supressing hyperglycemia-induced oxidative stress and inflammation in high fat diet/streptozotocin treated rats. Biomed Pharmacother. 2019;112:108678. doi:10.1016/j.biopha.2019.10867830784905
  • ZhongY, LeeK, DengY, et al. Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun. 2019;10(1):4523. doi:10.1038/s41467-019-12433-w31586053
  • WangW, SunW, ChengY, XuZ, CaiL. Role of sirtuin-1 in diabetic nephropathy. J Mol Med. 2019;97(3):291–309. doi:10.1007/s00109-019-01743-730707256
  • WadaJ, MakinoH. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016;12(1):13–26. doi:10.1038/nrneph.2015.17526568190
  • GnudiL, CowardRJM, LongDA. Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab. 2016;27(11):820–830. doi:10.1016/j.tem.2016.07.00227470431
  • JhaJC, BanalC, ChowBS, CooperME, Jandeleit-DahmK. Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal. 2016;25(12):657–684. doi:10.1089/ars.2016.666426906673
  • SagooMK, GnudiL. Diabetic nephropathy: is there a role for oxidative stress? Free Radic Biol Med. 2018;116:50–63. doi:10.1016/j.freeradbiomed.2017.12.04029305106
  • SiesH. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi:10.1016/j.redox.2015.01.00225588755
  • ReuterS, GuptaSC, ChaturvediMM, AggarwalBB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616. doi:10.1016/j.freeradbiomed.2010.09.00620840865
  • WuF, YangX, HuM, et al. Wu-Mei-Wan prevents high-fat diet-induced obesity by reducing white adipose tissue and enhancing brown adipose tissue function. Phytomedicine. 2020;76:153258. doi:10.1016/j.phymed.2020.15325832563018
  • DandekarA, MendezR, ZhangK. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol. 2015;1292:205–214. doi:10.1007/978-1-4939-2522-3_1525804758
  • LucK, Schramm-LucA, GuzikTJ, MikolajczykTP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6). doi:10.26402/jpp.2019.6.01
  • YaribeygiH, SathyapalanT, AtkinSL, SahebkarA. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:8609213. doi:10.1155/2020/860921332215179
  • WangE, WangL, DingR, et al. Astragaloside IV acts through multi-scale mechanisms to effectively reduce diabetic nephropathy. Pharmacol Res. 2020;157:104831. doi:10.1016/j.phrs.2020.10483132339782
  • BaoL, LiJ, ZhaD, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-kB pathways. Int Immunopharmacol. 2018;54:245–253. doi:10.1016/j.intimp.2017.11.02129161661
  • LeeD, KoWK, HwangDS, et al. Use of baicalin-conjugated gold nanoparticles for apoptotic induction of breast cancer cells. Nanoscale Res Lett. 2016;11(1):381. doi:10.1186/s11671-016-1586-327576521
  • LiHT, WuXD, DaveyAK, WangJ. Antihyperglycemic effects of baicalin on streptozotocin - nicotinamide induced diabetic rats. Phytother Res. 2011;25(2):189–194. doi:10.1002/ptr.323820632297
  • HeP, WuY, ShunJ, LiangY, ChengM, WangY. Baicalin ameliorates liver injury induced by chronic plus binge ethanol feeding by modulating oxidative stress and inflammation via CYP2E1 and NRF2 in mice. Oxid Med Cell Longev. 2017;2017:4820414. doi:10.1155/2017/482041428951767
  • ZhangS, XuL, LiangR, YangC, WangP. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-kappaB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem. 2020;76(3):407–416. doi:10.1007/s13105-020-00747-z32500512
  • ZhengXP, NieQ, FengJ, et al. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrol. 2020;21(1):174. doi:10.1186/s12882-020-01833-632398108
  • NamJE, JoSY, AhnCW, KimYS. Baicalin attenuates fibrogenic process in human renal proximal tubular cells (HK-2) exposed to diabetic milieu. Life Sci. 2020;254:117742. doi:10.1016/j.lfs.2020.11774232360619
  • FanY, YiZ, D’AgatiVD, et al. Comparison of kidney transcriptomic profiles of early and advanced diabetic nephropathy reveals potential new mechanisms for disease progression. Diabetes. 2019;68(12):2301–2314. doi:10.2337/db19-020431578193
  • YangM, KanL, WuL, ZhuY, WangQ. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism. Exp Ther Med. 2019;17(3):2071–2076. doi:10.3892/etm.2019.718130867693
  • CaiY, LiS, LiT, ZhouR, WaiAT, YanR. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-beta-d-glucuronide and their aglycones from an aqueous extract of scutellariae radix in the rat. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1026:124–133. doi:10.1016/j.jchromb.2015.11.049
  • DaiJ, LiangK, ZhaoS, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A. 2018;115(26):E5896–E5905. doi:10.1073/pnas.180174511529891721
  • Sifuentes-FrancoS, Padilla-TejedaDE, Carrillo-IbarraS, Miranda-DiazAG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol. 2018;2018:1875870. doi:10.1155/2018/187587029808088
  • DrogeW. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. doi:10.1152/physrev.00018.200111773609
  • TonelliC, ChioIIC, TuvesonDA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727–1745. doi:10.1089/ars.2017.734228899199
  • LobodaA, DamulewiczM, PyzaE, JozkowiczA, DulakJ. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–3247. doi:10.1007/s00018-016-2223-027100828
  • UmanathK, LewisJB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis. 2018;71(6):884–895. doi:10.1053/j.ajkd.2017.10.02629398179
  • ZhangXT, WangG, YeLF, et al. Baicalin reversal of DNA hypermethylation-associated klotho suppression ameliorates renal injury in type 1 diabetic mouse model. Cell Cycle. 2020;19(23):3329–3347. doi:10.1080/15384101.2020.184381533190590
  • ShinNR, GuN, ChoiHS, KimH. Combined effects of Scutellaria baicalensis with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. Am J Physiol Endocrinol Metab. 2020;318(1):E52–E61. doi:10.1152/ajpendo.00221.201931770016
  • WuF, ShaoQ, HuM, et al. Wu-Mei-Wan ameliorates chronic colitis-associated intestinal fibrosis through inhibiting fibroblast activation. J Ethnopharmacol. 2020;252:112580. doi:10.1016/j.jep.2020.11258031972322
  • BadalSS, DaneshFR. New insights into molecular mechanisms of diabetic kidney disease. Am J Kidney Dis. 2014;63(2 Suppl 2):S63–S83. doi:10.1053/j.ajkd.2013.10.04724461730
  • ForbesJM, CoughlanMT, CooperME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57(6):1446–1454. doi:10.2337/db08-005718511445
  • DuchenMR. Roles of mitochondria in health and disease. Diabetes. 2004;53(Suppl 1):S96–S102. doi:10.2337/diabetes.53.2007.s9614749273
  • Nogueira-MachadoJA, ChavesMM. From hyperglycemia to AGE-RAGE interaction on the cell surface: a dangerous metabolic route for diabetic patients. Expert Opin Ther Targets. 2008;12(7):871–882. doi:10.1517/14728222.12.7.87118554155
  • SinghS, VrishniS, SinghBK, RahmanI, KakkarP. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res. 2010;44(11):1267–1288. doi:10.3109/10715762.2010.50767020815789
  • NguyenT, NioiP, PickettCB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284(20):13291–13295. doi:10.1074/jbc.R90001020019182219
  • AdelusiTI, DuL, HaoM, et al. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother. 2020;123:109732. doi:10.1016/j.biopha.2019.10973231945695
  • TanY, IchikawaT, LiJ, et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 2011;60(2):625–633. doi:10.2337/db10-116421270272
  • GalkinaE, LeyK. Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol. 2006;17(2):368–377. doi:10.1681/ASN.200508085916394109
  • YongHY, KohMS, MoonA. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009;18(12):1893–1905. doi:10.1517/13543780903321490
  • SakaiN, WadaT, FuruichiK, et al. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 2005;45(1):54–65. doi:10.1053/j.ajkd.2004.08.03915696444
  • ZhangM, ChenY, YangMJ, et al. Celastrol attenuates renal injury in diabetic rats via MAPK/NF-kappaB pathway. Phytother Res. 2019;33(4):1191–1198. doi:10.1002/ptr.631430768745
  • ZhuY, ZhuC, YangH, DengJ, FanD. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res. 2020;155:104746. doi:10.1016/j.phrs.2020.10474632156650
  • MalikS, SuchalK, KhanSI, et al. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-kappaB-TNF-alpha and TGF-beta1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol. 2017;313(2):F414–F422. doi:10.1152/ajprenal.00393.201628566504
  • KoWC, ShiehJM, WuWB. P38 MAPK and Nrf2 activation mediated naked gold nanoparticle induced heme oxygenase-1 expression in rat aortic vascular smooth muscle cells. Arch Med Res. 2020;51(5):388–396. doi:10.1016/j.arcmed.2020.04.01532409143
  • JiangT, TianF, ZhengH, et al. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney Int. 2014;85(2):333–343. doi:10.1038/ki.2013.34324025640
  • ShengX, WangJ, GuoJ, et al. Effects of baicalin on diabetic cardiac autonomic neuropathy mediated by the P2Y12 receptor in rat stellate ganglia. Cell Physiol Biochem. 2018;46(3):986–998. doi:10.1159/00048882829669327
  • DaiC, JiangS, ChuC, XinM, SongX, ZhaoB. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145. Exp Mol Pathol. 2019;106:123–130. doi:10.1016/j.yexmp.2019.01.00230625293
  • QiaoYL, ZhouJJ, LiangJH, et al. Uncaria rhynchophylla ameliorates unpredictable chronic mild stress-induced depression in mice via activating 5-HT1A receptor: insights from transcriptomics. Phytomedicine. 2021;81:153436. doi:10.1016/j.phymed.2020.15343633360346
  • ZhangC, QiaoS, WuJ, et al. A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet beta cells. Pharmacol Res. 2021;165:105416. doi:10.1016/j.phrs.2020.10541633412277
  • DingZ, ZhongR, YangY, et al. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: a novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol Res. 2020;156:104759. doi:10.1016/j.phrs.2020.10475932200026
  • MohammadtursunN, LiQ, AbuduwakiM, et al. Loki zupa alleviates inflammatory and fibrotic responses in cigarette smoke induced rat model of chronic obstructive pulmonary disease. Chin Med. 2020;15:92. doi:10.1186/s13020-020-00373-332874197