480
Views
29
CrossRef citations to date
0
Altmetric
Original Research

A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment

, ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 2843-2855 | Published online: 30 Jun 2021

References

  • SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi:10.3322/caac.2166033538338
  • KamranSC, D’AmicoAV. Radiation therapy for prostate cancer. Hematol Oncol Clin North Am. 2020;34(1):45–69. doi:10.1016/j.hoc.2019.08.01731739952
  • KumarL, HarishP, MalikPS, KhuranaS. Chemotherapy and targeted therapy in the management of cervical cancer. Curr Probl Cancer. 2018;42(2):120–128. doi:10.1016/j.currproblcancer.2018.01.01629530393
  • SamadaniAA, KeymoradzdehA, ShamsS, et al. CAR T-cells profiling in carcinogenesis and tumorigenesis: an overview of CAR T-cells cancer therapy. Int Immunopharmacol. 2021;90:107201. doi:10.1016/j.intimp.2020.10720133249047
  • LiuJ, ZhengY, XuN. Low dose of apatinib in treating chemotherapy and EGFR-TKI refractory non-small cell lung cancer: a case report. Medicine (Baltimore). 2019;98(5):e14328. doi:10.1097/MD.000000000001432830702616
  • ChengYJ, HuJJ, QinSY, ZhangAQ, ZhangXZ. Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer. Biomaterials. 2020;232:119738. doi:10.1016/j.biomaterials.2019.11973831901695
  • MuhamadN, PlengsuriyakarnT, Na-BangchangK. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921–3935. doi:10.2147/IJN.S16521030013345
  • HussainZ, ThuHE, AmjadMW, et al. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng C Mater Biol Appl. 2017;77:1316–1326. doi:10.1016/j.msec.2017.03.22628532009
  • LalB, KapoorAK, AgrawalPK, AsthanaOP, SrimalRC. Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother Res. 2000;14(6):443–447. doi:10.1002/1099-1573(200009)14:6<443::aid-ptr619>3.0.co;2-v10960899
  • ZhaoX, ChenQ, LiY, et al. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur J Pharm Biopharm. 2015;93:27–36. doi:10.1016/j.ejpb.2015.03.00325770771
  • DasiF, Martinez-RodesP, MarchJA, et al. Real-time quantification of human telomerase reverse transcriptase mRNA in the plasma of patients with prostate cancer. Ann N Y Acad Sci. 2006;1075:204–210. doi:10.1196/annals.1368.02817108213
  • KumarP, BaruaCC, SulakhiyaK, SharmaRK. Curcumin ameliorates cisplatin-induced nephrotoxicity and potentiates its anticancer activity in SD rats: potential role of curcumin in breast cancer chemotherapy. Front Pharmacol. 2017;8:132. doi:10.3389/fphar.2017.0013228420987
  • RezaeeR, MomtaziAA, MonemiA, SahebkarA. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res. 2017;117:218–227. doi:10.1016/j.phrs.2016.12.03728042086
  • YadavP, BandyopadhyayA, ChakrabortyA, SarkarK. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr Polym. 2018;182:188–198. doi:10.1016/j.carbpol.2017.10.10229279114
  • ZhuJY, YangX, ChenY, et al. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/beta-catenin and Sonic Hedgehog pathways. Phytother Res. 2017;31(4):680–688. doi:10.1002/ptr.579128198062
  • MahranRI, HagrasMM, SunD, BrennerDE. Bringing curcumin to the clinic in cancer prevention: a review of strategies to enhance bioavailability and efficacy. AAPS J. 2017;19(1):54–81. doi:10.1208/s12248-016-0003-227783266
  • NabilG, BhiseK, SauS, et al. Nano-engineered delivery systems for cancer imaging and therapy: recent advances, future direction and patent evaluation. Drug Discov Today. 2019;24(2):462–491. doi:10.1016/j.drudis.2018.08.00930121330
  • ChenWL, YangSD, LiF, et al. Tumor microenvironment-responsive micelles for pinpointed intracellular release of doxorubicin and enhanced anti-cancer efficiency. Int J Pharm. 2016;511(2):728–740. doi:10.1016/j.ijpharm.2016.07.06027484835
  • WuM, CaoZ, ZhaoY, et al. Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery. Mater Sci Eng C Mater Biol Appl. 2016;64:346–353. doi:10.1016/j.msec.2016.03.09927127063
  • YangX, CaiX, YuA, XiY, ZhaiG. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J Colloid Interface Sci. 2017;496:311–326. doi:10.1016/j.jcis.2017.02.03328237749
  • FarshadMK, SoltaniM, SouriM. Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies. J Control Release. 2020;327:316–349. doi:10.1016/j.jconrel.2020.08.01232800878
  • El-HammadiMM, DelgadoAV, MelguizoC, PradosJC, AriasJL. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm. 2017;516(1–2):61–70. doi:10.1016/j.ijpharm.2016.11.01227825867
  • KurosawaY, FurugenA, NishimuraA, et al. Evaluation of the effects of antiepileptic drugs on folic acid uptake by human placental choriocarcinoma cells. Toxicol in Vitro. 2018;48:104–110. doi:10.1016/j.tiv.2017.12.00329223574
  • SousaM, LunaLA, FonsecaLC, GiorgioS, AlvesOL. Folic-acid-functionalized graphene oxide nanocarrier: synthetic approaches, characterization, drug delivery study, and antitumor screening. ACS Appl Nano Mater. 2018;1(2):922–932. doi:10.1021/acsanm.7b00324
  • MonteiroLOF, FernandesRS, OdaCMR, et al. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: a biodistribution study. Biomed Pharmacother. 2018;97:489–495. doi:10.1016/j.biopha.2017.10.13529091899
  • BakshiPR, LondheVY. Widespread applications of host-guest interactive cyclodextrin functionalized polymer nanocomposites: its meta-analysis and review. Carbohydr Polym. 2020;242:116430. doi:10.1016/j.carbpol.2020.11643032564862
  • FaezehA, SaharA, MajidG. Improve solubility of acetamidophenol from PEG and witepsol suppositories via formation of inclusion complex by β-cyclodextrin with a controlled release profile. J Pharm Innov. 2018;14(1):1–9. doi:10.1007/s12247-018-9328-y
  • PopatA, KarmakarS, JambhrunkarS, XuC, YuC. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces. 2014;117:520–527. doi:10.1016/j.colsurfb.2014.03.00524698148
  • HyunH, LeeS, LimW, et al. Engineered beta-cyclodextrin-based carrier for targeted doxorubicin delivery in breast cancer therapy in vivo. J Ind Eng Chem. 2018;70. doi:10.1016/j.jiec.2018.09.052
  • LuongD, KesharwaniP, AlsaabHO, et al. Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surf B Biointerfaces. 2017;157:490–502. doi:10.1016/j.colsurfb.2017.06.02528658642
  • GuoF, GuoD, ZhangW, et al. Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology. Eur J Pharm Sci. 2017;99:328–336. doi:10.1016/j.ejps.2017.01.00128062259
  • GuoF, WuJ, WuW, et al. PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors. J Nanobiotechnology. 2018;16(1):57. doi:10.1186/s12951-018-0384-830012166
  • SuhMS, ShenJ, KuhnLT, BurgessDJ. Layer-by-layer nanoparticle platform for cancer active targeting. Int J Pharm. 2017;517(1–2):58–66. doi:10.1016/j.ijpharm.2016.12.00627923697
  • LiaoJ, ZhengH, FeiZ, et al. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin. Int J Biol Macromol. 2018;113:737–747. doi:10.1016/j.ijbiomac.2018.03.00429505869
  • JiangQY, LaiLH, ShenJ, et al. Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials. 2011;32(29):7253–7262. doi:10.1016/j.biomaterials.2011.06.01521715001