253
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Novel Anti-Tubulin Compounds from Trigonella foenum-graecum Seeds; Insights into In-vitro and Molecular Docking Studies

ORCID Icon, ORCID Icon, , , , , ORCID Icon & show all
Pages 4195-4211 | Published online: 05 Oct 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.2159031912902
  • PearceA, HaasM, VineyR, et al. Incidence and severity of self-reported chemotherapy side effects in routine care: a prospective cohort study. PLoS One. 2017;12(10):e0184360. doi:10.1371/journal.pone.018436029016607
  • AzaizehH, SaadB, CooperE, SaidO. Traditional Arabic and Islamic medicine, a re-emerging health aid. Evid Based Complement Alternat Med. 2010;7(4):419–424. doi:10.1093/ecam/nen03918955344
  • SaadB, AzaizehH, SaidO. Tradition and perspectives of Arab herbal medicine: a review. Evid Based Complement Alternat Med. 2005;2(4):475–479. doi:10.1093/ecam/neh13316322804
  • OmeishAF, AbbadiW, GhanmaIM, et al. Hospital-based study on the use of herbal medicine in patients with coronary artery disease in Jordan. J Pak Med Assoc. 2011;61(7):683–687.22204246
  • TangJ, SongX, ZhuM, ZhangJ. Study on the pharmacokinetics drug-drug interaction potential of Glycyrrhiza uralensis, a traditional Chinese medicine, with lidocaine in rats. Phytother Res. 2009;23(5):603–607. doi:10.1002/ptr.245019173278
  • Nagulapalli VenkataKC, SwaroopA, BagchiD, BishayeeA. A small plant with big benefits: fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res. 2017;61(6):1600950. doi:10.1002/mnfr.201600950
  • PiettaPG. Flavonoids as antioxidants. J Nat Prod. 2000;63(7):1035–1042. doi:10.1021/np990450910924197
  • KaviarasanS, VijayalakshmiK, AnuradhaCV. Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods Hum Nutr. 2004;59(4):143–147. doi:10.1007/s11130-004-0025-215678722
  • NairS, NagarR, GuptaR. Antioxidant phenolics and flavonoids in common Indian foods. J Assoc Physicians India. 1998;46(8):708–710.11229280
  • FekiA, JaballiI, CherifB, et al. Therapeutic potential of polysaccharide extracted from fenugreek seeds against thiamethoxam-induced hepatotoxicity and genotoxicity in Wistar adult rats. Toxicol Mech Methods. 2019;29(5):355–367. doi:10.1080/15376516.2018.156494930621503
  • HannanJM, AliL, RokeyaB, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br J Nutr. 2007;97(3):514–521. doi:10.1017/S000711450765786917313713
  • SauvaireY, PetitP, BrocaC, et al. 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes. 1998;47(2):206–210. doi:10.2337/diab.47.2.2069519714
  • FullerS, StephensJM. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome. Adv Nutr. 2015;6(2):189–197. doi:10.3945/an.114.00780725770257
  • BaschE, UlbrichtC, KuoG, SzaparyP, SmithM. Therapeutic applications of fenugreek. Altern Med Rev. 2003;8(1):20–27.12611558
  • AlsemariA, AlkhodairyF, AldakanA, et al. The selective cytotoxic anti-cancer properties and proteomic analysis of Trigonella foenum-graecum. BMC Complement Altern Med. 2014;14:114. doi:10.1186/1472-6882-14-11424679057
  • ChatterjeeS, KumarM, KumarA. Chemomodulatory effect of Trigonella foenum graecum (L.) seed extract on two stage mouse skin carcinogenesis. Toxicol Int. 2012;19(3):287–294. doi:10.4103/0971-6580.10367023293468
  • KhalilMI, IbrahimMM, El-GaalyGA, SultanAS. Trigonella foenum (Fenugreek) induced apoptosis in hepatocellular carcinoma cell line, HepG2, mediated by upregulation of p53 and proliferating cell nuclear antigen. Biomed Res Int. 2015;2015:914645. doi:10.1155/2015/91464526557712
  • Al-TimimiLAN. Antibacterial and anticancer activities of fenugreek seed extract. Asian Pac J Cancer Prev. 2019;20(12):3771–3776. doi:10.31557/APJCP.2019.20.12.377131870120
  • AhmedSI, HayatMQ, ZahidS, et al. Isolation and identification of flavonoids from anticancer and neuroprotective extracts of Trigonelle foenum-graecum. Tropical J Pharm Res. 2017;16(6):1391–1398. doi:10.4314/tjpr.v16i6.25
  • BinarováP, TuszynskiJ. Tubulin: structure, functions and roles in disease. Cells. 2019;8(10):1294. doi:10.3390/cells8101294
  • FieldJJ, DíazJF, MillerJH. The binding sites of microtubule-stabilizing agents. Chem Biol. 2013;20(3):301–315. doi:10.1016/j.chembiol.2013.01.01423521789
  • NaazF, HaiderMR, ShafiS, et al. Anti-tubulin agents of natural origin: targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem. 2019;171:310–331. doi:10.1016/j.ejmech.2019.03.02530953881
  • NagireddyPKR, KommalapatiVK, Siva KrishnaV, SriramD, TanguturAD, KantevariS. Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives as anticancer agents. ACS Omega. 2019;4(21):19382–19398. doi:10.1021/acsomega.9b0278931763563
  • AliR, SammanN, Al ZahraniH, et al. Isolation and characterization of a new naturally immortalized human breast carcinoma cell line, KAIMRC1. BMC Cancer. 2017;17(1):803. doi:10.1186/s12885-017-3812-529187162
  • DainaA, MichielinO, ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi:10.1038/srep4271728256516
  • FilimonovD, LaguninA, GloriozovaT, et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd. 2014;50(3):444–457.
  • LipinskiCA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–341. doi:10.1016/j.ddtec.2004.11.00724981612
  • LipinskiCA, LombardoF, DominyBW, FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. doi:10.1016/s0169-409x(00)00129-011259830
  • LeoA, HanschC, ElkinsD. Partition coefficients and their uses. Chem Rev. 1971;71(6):525–616.
  • JorgensenWL, DuffyEM. Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett. 2000;10(11):1155–1158. doi:10.1016/s0960-894x(00)00172-410866370
  • AjayBGW, MurckoMA. Designing libraries with CNS activity. J Med Chem. 1999;42(24):4942–4951. doi:10.1021/jm990017w10585204
  • MeloPS, De AzevedoMB, ZulloMA, Fabrin-NetoJB, HaunM. Cytotoxicity of the phytosterol diosgenin and its derivatives in rat cultured hepatocytes and V79 fibroblasts. Hum Exp Toxicol. 2004;23(10):487–493. doi:10.1191/0960327104ht474oa15553174
  • SkalstaH. Chemical constituents. In: GeorgiosAP, editor. Fenugreek, The Genus Trigonella. New York: Taylor & Francis Inc; 2002:132.
  • LiG, LuanG, HeY, et al. Polyphenol stilbenes from fenugreek (Trigonella foenum-graecumL.) seeds improve insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. Oxid Med Cell Longev. 2018;2018:7634362. doi:10.1155/2018/763436229967664
  • TorresF, QuintanaJ, EstévezF. 5,7,3ʹ-trihydroxy-3,4ʹ-dimethoxyflavone-induced cell death in human leukemia cells is dependent on caspases and activates the MAPK pathway. Mol Carcinog. 2010;49(5):464–475. doi:10.1002/mc.2061920175127
  • BeutlerJA, CardellinaJH II, LinCM, et al. Centaureidin, a cytotoxic flavone from Polymnia fruticosa, inhibits tubulin polymerization. Bioorg Med Chem Letters. 1993;3(4):581–584.
  • LiuE, KuangY, HeW, XingX, GuJ. Casticin induces human glioma cell death through apoptosis and mitotic arrest. Cell Physiol Biochem. 2013;31(6):805–814.23816816
  • LinY, SunH, DangY, LiZ. Isoliquiritigenin inhibits the proliferation and induces the differentiation of human glioma stem cells. Oncology Rep. 2018;39(2):687–694.
  • ButinaD, SegallMD, FrankcombeK. Predicting ADME properties in silico: methods and models. Drug Discovery Today. 2002;7(11):S83–S88.12047885
  • MukhtarE, AdhamiVM, SechiM, MukhtarH. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Letters. 2015;367(2):173–183.26235140
  • TorresF, QuintanaJ, EstévezF. 5, 7, 3′‐trihydroxy‐3, 4′‐dimethoxyflavone inhibits the tubulin polymerization and activates the sphingomyelin pathway. Mol Carcinog. 2011;50(2):113–122.21229608
  • GuptaK, PandaDJB. Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity. Biochemistry. 2002;41(43):13029–13038.12390030
  • BeutlerJA, HamelE, VlietinckAJ, et al. Structure− activity requirements for flavone cytotoxicity and binding to tubulin. J Med Chem. 1998;41(13):2333–2338.9632366