491
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Effectiveness and Anticancer Activity of a Novel Phenolic Compound from Garcinia porrecta Against the MCF-7 Breast Cancer Cell Line in vitro and in silico

, , , , & ORCID Icon
Pages 3523-3533 | Published online: 12 Aug 2021

References

  • BrayF, FerlayJ, SoerjomataramI, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • PrayogoAA, WijayaAY, HendrataWM, et al. Dedifferentiation of MCF-7 breast cancer continuous cell line, development of breast cancer stem cells (BCSCs) enriched culture and biomarker analysis. Indones Biomed J. 2020;12(2):115–123. doi:10.18585/inabj.v12i2.977
  • FikrohRA, MatsjehS, AnwarC. Synthesis and anticancer activity of (E)-2ʹ-hydroxy-2-bromo-4,5-dimethoxychalcone against breast cancer (MCF-7) cell line. Molekul. 2020;15(1):34–39. doi:10.20884/1.jm.2020.15.1.558
  • KetabforooshSHME, KheirollahiA, SafaviM, et al. Synthesis and anti-cancer activity evaluation of new dimethoxylated chalcone and flavanone analogs. Arch Pharm Chem Life Sci. 2014;347(11):853–860. doi:10.1002/ardp.201400215
  • RocheVF. Cancer and chemotherapy. In: LemkeTL, WilliamsDA, RocheVF, ZitoSW, editors. Foye’s Principles of Medicinal Chemistry. 11th ed. Baltimore: Lippincott Williams and Wilkins; 2016:1199–1266.
  • GiacintiL, ClaudioPP, LopezM, et al. Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist. 2006;11(1):1–8. doi:10.1634/theoncologist.11-1-1
  • HansteinB, DjahansouziS, DallP, et al. Insight into molecular biology of the estrogen receptor define novel therapeutic targets for breast cancer. Eur J Endocrinol. 2004;150(3):243–255. doi:10.1530/eje.0.150024315012607
  • HayashiSI, EguchiH, TanimotoK, et al. The expression and function of estrogen receptor α and β in human breast cancer and its clinical application. Endocr Relat Cancer. 2003;10(2):193–202. doi:10.1677/erc.0.010019312790782
  • SuganyaJ, RadhaM, NaoremDL, et al. In silico docking studies of selected flavonoids - natural healing agents against breast cancer. Asian Pac J Cancer Prev. 2014;15(19):8155–8159. doi:10.7314/APJCP.2014.15.19.815525338999
  • TanH, ZhongY, PanZ. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines. BMC Cancer. 2009;9(31):1–12. doi:10.1186/1471-2407-9-3119118499
  • YuY, ShenMY, SongQQ, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym. 2018;183:91–101. doi:10.1016/j.carbpol.2017.12.00929352896
  • SudhaA, SrinivasanP, KanimozhiV, et al. Antiproliferative and apoptosis-induction studies of 5-hydroxy 3ʹ,4ʹ,7-trimethoxyflavone in human breast cancer cells MCF-7: an in vitro and in silico approach. J Recept Signal Transduct. 2018;38:1–13. doi:10.1080/10799893.2018.1468780
  • TabassumS, ZakiM, AfzalM, et al. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Ia: in vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. Eur J Med Chem. 2014;74(2014):509–523. doi:10.1016/j.ejmech.2013.12.04624508781
  • KitchenDB, DecornezH, FurrJR, BajorathJ. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–949. doi:10.1038/nrd154915520816
  • BritoLC, BerengerALR, FigueiredoMR. An overview of anticancer activity of Garcinia and Hypericum. Food Chem Toxicol. 2017;109:847–862.28363851
  • HemshekharM, SunithaK, SanthoshMS, et al. An overview on genus garcinia: phytochemical and therapeutical aspects. Phytochem Rev. 2011;10(3):325–351. doi:10.1007/s11101-011-9207-3
  • ChinYW, KinghornAD. Structural characterization, biological effects, and synthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini Rev Org Chem. 2008;5(4):355–364. doi:10.2174/15701930878624222321562610
  • SuksamrarnS, KomutibanO, RatananukulP, et al. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull. 2006;54(3):301–305. PMID: 16508181. doi:10.1248/cpb.54.301
  • IbrahimSRM, AbdallahHM, El-HalawanyAM, et al. Garcixanthones b and c, new xanthones from the pericarps of Garcinia mangostana and their cytotoxic activity. Phytochem Lett. 2018;25:12–16. doi:10.1016/j.phytol.2018.03.009
  • SubarnasA, DiantinilA, AbdulahR, et al. Apoptosis-mediated antiproliferative activity of friedolanostane triterpenoid isolated from the leaves of Garcinia celebica against MCF7 human breast cancer cell lines. Biomed Rep. 2016;4(1):79–82. doi:10.3892/br.2015.53226870339
  • BuiTQ, BuiA, NguyenKT, et al. A depsidone and six triterpenoids from the bark of Garcinia celebica. Tetrahedron Lett. 2016;57(23):2524–2529. doi:10.1016/j.tetlet.2016.04.104
  • RitthiwigromT, LaphookhieoS, PyneSG. Chemical constituents and biological activities of Garcinia cowa Roxb. J Sci Technol. 2013;7(2):212–231. doi:10.14456/mijst.2013.18
  • SariAC, ElyaB. Antioxidant activity and lipoxygenase enzyme inhibition assay with total flavonoid assay of Garcinia porrecta Laness. stem bark extracts. Pharm J. 2017;9:257–266. doi:10.5530/pj.2017.2.44
  • ObolskiyD, PischelI, SiriwatanametanonN, HeinrichM. Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res. 2009;23(8):1047–1065. doi:10.1002/ptr.273019172667
  • Al-ShagdariA, AlarcónAB, Cuesta-RubioO, et al. Biflavonoids, main constituents from Garcinia bakeriana leaves. Nat Prod Commun. 2013;8(9):1237–1240.24273855
  • KardonoLBS, HanafiM, SherleyG, et al. Bioactive constituents of Garcinia porrecta and Garcinia parvifolia grown in Indonesia. Pak J Biol Sci. 2006;9(3):483–486. doi:10.3923/pjbs.2006.483.486
  • SafitriAN. 5,5-Oxybis(1,3,7-trihydroxy-9H-xanthen-9-one): a new xanthone from the stem bark of Garcinia porrecta (Clusiaceae). Molbank. 2020;3:1–5. doi:10.3390/M1153w
  • HeahKG, ShobriNRBM, KhoruddinNAB, et al. A review on dimethyl thiazodiphenyl-tetrazoliumbromide (MTT) assay in cell viability. Res J App Sci. 2017;12(7–9):372–378.
  • GreverMR, SchepartzSA, ChabnerBA. The national cancer institute: cancer drug discovery and development program. Semin Oncol. 1992;19(6):622–638. PMID: 1462164.1462164
  • NguyenNH, TaQTH, PhamQT, et al. Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules. 2020;25(2192):1–16. doi:10.3390/molecules25122912
  • Dahlman-WrightK, CavaillesV, FuquaSA, et al. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol Rev. 2006;58(4):773–781. PMID: 17132854. doi:10.1124/pr.58.4.817132854
  • GrossJM, YeeD. Commentary how does the estrogen receptor work. Breast Cancer Res. 2002;4(2):62–64. doi:10.1186/bcr42411879565
  • OsmanAM, BayoumiHM, Al-HarthiSE, et al. Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Cancer Cell Int. 2012;12(1):47–53. doi:10.1186/1475-2867-12-4723153194
  • FitriahA, HolilK, SyarifahU, et al. In silico approach for revealing the anti-breast cancer and estrogen receptor alpha. AIP Conference Proceedings; 2018; 2021; AIP Publishing LLC.doi: 10.1063/1.5062801.
  • HerdiyatiY, AstridY, ShadrinaAAN, et al. Potential fatty acid as antibacterial agent against oral bacteria of Streptococcus mutans and Streptococcus sanguinis from basil (Ocimum americanum): in vitro and in silico studies. Curr Drug Discov Technol. 2020;16:1–10. doi:10.2174/1570163817666200712171652
  • MustarichieR, LevitaJ, ArpinaJ. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer. Med J Indones. 2014;23(1):15–24. doi:10.13181/mji.v23i1.684
  • SatyanarayanajoisS, VillalbaS, JianchaoL, LinGM. Design, synthesis, and docking studies of peptidomimetics based on HER2–Herceptin binding site with potential antiproliferative activity against breast cancer cell lines. Chem Biol Drug Des. 2009;74(3):246–257. doi:10.1111/j.1747-0285.2009.00855.x19703026
  • Ümit BağríaçíkE, UsluK, YurtçuE, et al. Stobadine inhibits doxorubicin‐induced apoptosis through a caspase‐9 dependent pathway in P815 mastocytoma cells. Cell Biol Int. 2007;31(9):979–984. doi:10.1016/j.cellbi.2007.03.00817481927
  • CaoW, ChiWH, WangJ, et al. TNF-α promotes doxorubicin-induced cell apoptosis and anti-cancer effect through downregulation of p21 in p53-deficient tumor cells. Biochem Biophys Res Commun. 2005;330(4):1034–1040. doi:10.1016/j.bbrc.200f5.02.18815823547