193
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Selection of DNA Aptamers Recognizing EpCAM-Positive Prostate Cancer by Cell-SELEX for in vitro and in vivo MR Imaging

, , , , , , & ORCID Icon show all
Pages 3985-3996 | Published online: 21 Sep 2021

References

  • ShigdarS, LinJ, YuY, PastuovicM, WeiM, DuanW. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci. 2011;102(5):991–998. doi:10.1111/j.1349-7006.2011.01897.x21281402
  • ZhangJ, QiYP, MaN, et al. Overexpression of Epcam and CD133 correlates with poor prognosis in dual-phenotype hepatocellular carcinoma. J Cancer. 2020;11(11):3400–3406. doi:10.7150/jca.4109032231746
  • AbabnehN, AlshaerW, AlloziO, et al. In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker. Nucleic Acid Ther. 2013;23(6):401–407. doi:10.1089/nat.2013.042324171482
  • SubramanianN, KanwarJR, KanwarRK, et al. EpCAM aptamer-siRNA chimera targets and regress epithelial cancer. PLoS One. 2015;10(7):e132407. doi:10.1371/journal.pone.0132407
  • SongY, ZhuZ, AnY, et al. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem. 2013;85(8):4141–4149. doi:10.1021/ac400366b23480100
  • WentP, VaseiM, BubendorfL, et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer. 2006;94(1):128–135. doi:10.1038/sj.bjc.660292416404366
  • BenkoG, SpajicB, KruslinB, TomasD. Impact of the EpCAM expression on biochemical recurrence-free survival in clinically localized prostate cancer. Urol Oncol. 2013;31(4):468–474. doi:10.1016/j.urolonc.2011.03.00721514185
  • PatriarcaC, MacchiRM, MarschnerAK, MellstedtH. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev. 2012;38(1):68–75. doi:10.1016/j.ctrv.2011.04.00221576002
  • TuerkC, GoldL. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–510. doi:10.1126/science.22001212200121
  • ZhangY, HongH, CaiW. Tumor-targeted drug delivery with aptamers. Curr Med Chem. 2011;18(27):4185–4194. doi:10.2174/09298671179718954721838687
  • KimJW, KimEY, KimSY, et al. Identification of DNA aptamers toward epithelial cell adhesion molecule via cell-SELEX. Mol Cells. 2014;37(10):742–746. doi:10.14348/molcells.2014.020825266702
  • SzeitnerZ, AndrasJ, GyurcsanyiRE, MeszarosT. Is less more? Lessons from aptamer selection strategies. J Pharm Biomed Anal. 2014;101:58–65. doi:10.1016/j.jpba.2014.04.01824877649
  • XieX, LiF, ZhangH, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28–35. doi:10.1016/j.ejps.2015.12.01426690044
  • ZhengJ, ZhaoS, YuX, HuangS, LiuHY. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics. 2017;7(5):1373–1388. doi:10.7150/thno.1782628435472
  • AlibolandiM, RamezaniM, SadeghiF, AbnousK, HadizadehF. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm. 2015;479(1):241–251. doi:10.1016/j.ijpharm.2014.12.03525529433
  • MacdonaldJ, DenoyerD, HenriJ, et al. Bifunctional aptamer-Doxorubicin conjugate crosses the blood-brain barrier and selectively delivers its payload to EpCAM-positive tumor cells. Nucleic Acid Ther. 2020;30(2):117–128. doi:10.1089/nat.2019.080732027209
  • YigitMV, MazumdarD, LuY. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem. 2008;19(2):412–417. doi:10.1021/bc700392818173225
  • LiangG, CaiS, ZhangP, et al. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles. Anal Chim Acta. 2011;689(2):243–249. doi:10.1016/j.aca.2011.01.04621397080
  • IslamT, JosephsonL. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark. 2009;5(2):99–107. doi:10.3233/CBM-2009-061519414927
  • CuiYL, HuDD, FangY, MaJB. Preparation and mechanism of Fe3O4/Au core/shell super-paramagnetic microsphere. Sci China Series B. 2001;44(6):404–410. doi:10.1007/BF02879815
  • ParkHY, SchadtMJ, WangL, et al. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir. 2007;23(17):9050–9056. doi:10.1021/la701305f17629315
  • LinJ, ZhouWL, KumbharA, et al. Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem. 2001;159(1):26–31. doi:10.1006/jssc.2001.9117
  • BelloneS, SiegelER, CoccoE, et al. Overexpression of epithelial cell adhesion molecule in primary, metastatic, and recurrent/ chemotherapy-resistant epithelial ovarian cancer: implications for epithelial cell adhesion molecule-specific immunotherapy. Int J Gynecol Cancer. 2009;19(5):860–866. doi:10.1111/IGC.0b013e3181a8331f19574774
  • Passebosc-FaureK, LiG, LambertC, et al. Evaluation of a panel of molecular markers for the diagnosis of malignant serous effusions. Clin Cancer Res. 2005;11(19 Pt 1):6862–6867. doi:10.1158/1078-0432.CCR-05-004316203775
  • WentPT, LugliA, MeierS, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35(1):122–128. doi:10.1016/j.humpath.2003.08.02614745734
  • RaoCG, ChianeseD, DoyleGV, et al. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol. 2005;27(1):49–57.15942643
  • ZhangY, LaiBS, JuhasM. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941. doi:10.3390/molecules24050941
  • GotrikMR, FeaginTA, CsordasAT, NakamotoMA, SohHT. Advancements in aptamer discovery technologies. Acc Chem Res. 2016;49(9):1903–1910. doi:10.1021/acs.accounts.6b0028327526193
  • WangT, ChenC, LarcherLM, BarreroRA, VeeduRN. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37(1):28–50. doi:10.1016/j.biotechadv.2018.11.00130408510
  • CaiS, YanJ, XiongH, LiuY, PengD, LiuZ. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst. 2018;143(22):5317–5338. doi:10.1039/C8AN01467A30357118
  • AlshaerW, AbabnehN, HatmalM, et al. Selection and targeting of EpCAM protein by ssDNA aptamer. PLoS One. 2017;12(12):e189558. doi:10.1371/journal.pone.0189558
  • BaviR, LiuZ, HanZ, ZhangH, GuY. In silico designed RNA aptamer against epithelial cell adhesion molecule for cancer cell imaging. Biochem Biophys Res Commun. 2019;509(4):937–942. doi:10.1016/j.bbrc.2019.01.02830648555
  • DarmostukM, RimpelovaS, GbelcovaH, RumlT. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33(6 Pt 2):1141–1161. doi:10.1016/j.biotechadv.2015.02.00825708387
  • Dulinska-LitewkaJ, LazarczykA, HalubiecP, SzafranskiO, KarnasK, KarewiczA. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel). 2019;12(4):617. doi:10.3390/ma12040617
  • MandalM, KunduS, GhoshSK, et al. Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci. 2005;286(1):187–194. doi:10.1016/j.jcis.2005.01.01315848416
  • MeldrumFC, HeywoodBR, MannS. Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science. 1992;257(5069):522–523. doi:10.1126/science.16360861636086