110
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Effects of Avitinib on CYP450 Enzyme Activity in vitro and in vivo in Rats

, , ORCID Icon, , , , , & ORCID Icon show all
Pages 3661-3673 | Published online: 21 Aug 2021

References

  • RoskoskiR. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res. 2019;139:395–411. doi:10.1016/j.phrs.2018.11.01430500458
  • FerlayJ, ColombetM, SoerjomataramI, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941–1953. doi:10.1002/ijc.3193730350310
  • QiangH, ChangQ, XuJ, et al. New advances in antiangiogenic combination therapeutic strategies for advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2020;146(3):631–645. doi:10.1007/s00432-020-03129-632065262
  • XuX, MaoL, XuW, et al. AC0010, an irreversible EGFR inhibitor selectively targeting mutated EGFR and overcoming T790M-induced resistance in animal models and lung cancer patients. Mol Cancer Ther. 2016;15:2586–2597. doi:10.1158/1535-7163.MCT-16-028127573423
  • ZhangYC, ChenZH, ZhangXC, et al. Analysis of resistance mechanisms to abivertinib, a third-generation EGFR tyrosine kinase inhibitor, in patients with EGFR T790M-positive non-small cell lung cancer from a Phase I trial. EBioMedicine. 2019;43:180–187. doi:10.1016/j.ebiom.2019.04.03031027916
  • WangH, PanR, ZhangX, SiX, WangM, ZhangL. Abivertinib in patients with T790M-positive advanced NSCLC and its subsequent treatment with osimertinib. Thorac Cancer. 2020;11:594–602. doi:10.1111/1759-7714.1330231943845
  • HuangS, PanJ, JinJ, et al. Abivertinib, a novel BTK inhibitor: anti-Leukemia effects and synergistic efficacy with homoharringtonine in acute myeloid leukemia. Cancer Lett. 2019;461:132–143. doi:10.1016/j.canlet.2019.07.00831310800
  • XuX. Parallel Phase 1 clinical trials in the US and in China: accelerating the test of avitinib in lung cancer as a novel inhibitor selectively targeting mutated EGFR and overcoming T790M-induced resistance. Chin J Cancer. 2015;34:285–287. doi:10.1186/s40880-015-0029-326152224
  • MaY, ZhengX, ZhaoH, et al. First-in-human phase I study of AC0010, a mutant-selective EGFR inhibitor in non-small cell lung cancer: safety, efficacy, and potential mechanism of resistance. J Thorac Oncol. 2018;13:968–977. doi:10.1016/j.jtho.2018.03.02529626621
  • ZhengX, WangW, ZhangY, et al. Development of an LC-MS/MS method for quantifying two main metabolites of abivertinib in human plasma. Biomed Chromatogr. 2020;34:e4704. doi:10.1002/bmc.470431629371
  • AttwaMW, KadiAA, AbdelhameedAS. Reactive intermediates and bioactivation pathways characterization of avitinib by LC-MS/MS: in vitro metabolic investigation. J Pharm Biomed Anal. 2019;164:659–667. doi:10.1016/j.jpba.2018.11.03330472584
  • WangW, ZhengX, WangH, WangL, JiangJ, HuP. Development of an UPLC-MS/MS method for quantification of Avitinib (AC0010) and its five metabolites in human cerebrospinal fluid: application to a study of the blood-brain barrier penetration rate of non-small cell lung cancer patients. J Pharm Biomed Anal. 2017;139:205–214. doi:10.1016/j.jpba.2017.02.05728285073
  • WangL, ZhengX, WangW, HuP, JiangJ. An LC-MS/MS method for quantification of AC0010, a novel mutant-selective epidermal growth factor receptor (EGFR) inhibitor, and its metabolites in human plasma and the application to a pharmacokinetic study. J Pharm Biomed Anal. 2017;141:9–18. doi:10.1016/j.jpba.2017.03.05128414972
  • WuQ, JiangH, WangS, et al. Effects of avitinib on the pharmacokinetics of osimertinib in vitro and in vivo in rats. Thorac Cancer. 2020;11:2775–2781. doi:10.1111/1759-7714.1358732812378
  • ChuLL, PandeyRP, JungN, JungHJ, KimEH, SohngJK. Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities. Microb Cell Fact. 2016;15:135. doi:10.1186/s12934-016-0533-427495155
  • HuangY, ZhengSL, ZhuHY, XuZS, XuRA. Effects of aescin on cytochrome P450 enzymes in rats. J Ethnopharmacol. 2014;151:583–590. doi:10.1016/j.jep.2013.11.01624252494
  • AlbaughDR, FullenwiderCL, FisherMB, HutzlerJM. Time-dependent inhibition and estimation of CYP3A clinical pharmacokinetic drug-drug interactions using plated human cell systems. Drug Metab Dispos. 2012;40:1336–1344. doi:10.1124/dmd.112.04464422490230
  • KhojastehSC, PrabhuS, KennyJR, HalladayJS, LuAY. Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur J Drug Metab Pharmacokinet. 2011;36:1–16. doi:10.1007/s13318-011-0024-221336516
  • ZhouS, GaoY, JiangW, HuangM, XuA, PaxtonJW. Interactions of herbs with cytochrome P450. Drug Metab Rev. 2003;35:35–98. doi:10.1081/DMR-12001824812635815
  • HuangLH, ZhongYM, XiongXH, et al. The disposition of oxymatrine in the vascularly perfused rat intestine-liver preparation and its metabolism in rat liver microsomes. J Pharm Sci. 2016;105:897–903. doi:10.1016/j.xphs.2015.11.01226869434
  • de AndresF, LlerenaA. Simultaneous determination of cytochrome P450 oxidation capacity in humans: a review on the phenotyping cocktail approach. Curr Pharm Biotechnol. 2016;17:1159–1180. doi:10.2174/138920101766616092615011727677273
  • EbnerT, IshiguroN, TaubME. The use of transporter probe drug cocktails for the assessment of transporter-based drug-drug interactions in a clinical setting-proposal of a four component transporter cocktail. J Pharm Sci. 2015;104:3220–3228. doi:10.1002/jps.2448925981193
  • WangSH, LinZX, SuK, et al. Effect of curcumin and pirfenidone on toxicokinetics of paraquat in rat by UPLC-MS/MS. Acta Chromatographica. 2018;30:26–30. doi:10.1556/1326.2017.00175
  • WangSH, ZhangZG, YuZ, HanC, WangXQ. Pharmacokinetic study of delavinone in mice after intravenous and oral administration by UPLC-MS/MS. Biomed Res Int. 2019;2019:3163218. doi:10.1155/2019/3163218
  • WangSH, DongYW, SuK, et al. Effect of codeine on CYP450 isoform activity of rats. Pharm Biol. 2017;55:1223–1227. doi:10.1080/13880209.2017.129746628253826
  • WangY, WangC, WangS, et al. Cytochrome P450-based drug-drug interactions of vonoprazan in vitro and in vivo. Front Pharmacol. 2020;11:53. doi:10.3389/fphar.2020.0005332116727
  • ZhouY, HuaA, ZhouQ, et al. Inhibitory effect of lygodium root on the cytochrome P450 3A enzyme in vitro and in vivo. Drug Des Devel Ther. 2020;14:1909–1919. doi:10.2147/DDDT.S249308
  • ZhouY, TuY, ZhouQ, et al. Evaluation of acacetin inhibition potential against cytochrome P450 in vitro and in vivo. Chem Biol Interact. 2020;329:109147. doi:10.1016/j.cbi.2020.10914732738202
  • OrrST, RippSL, BallardTE, et al. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J Med Chem. 2012;55:4896–48933. doi:10.1021/jm300065h22409598
  • PilgrimJL, GerostamoulosD, DrummerOH. Review: pharmacogenetic aspects of the effect of cytochrome P450 polymorphisms on serotonergic drug metabolism, response, interactions, and adverse effects. Forensic Sci Med Pathol. 2011;7:162–184. doi:10.1007/s12024-010-9188-321052868
  • SpaggiariD, GeiserL, DaaliY, RudazS. A cocktail approach for assessing the in vitro activity of human cytochrome P450s: an overview of current methodologies. J Pharm Biomed Anal. 2014;101:221–237. doi:10.1016/j.jpba.2014.03.01824746851
  • YanZY, CaldwellGW. Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr Top Med Chem. 2001;1:403–425. doi:10.2174/156802601339500111899105
  • LinJH, LuAY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–567. doi:10.1146/annurev.pharmtox.41.1.53511264468
  • ZhouSF, XueCC, YuXQ, et al. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29:687–710. doi:10.1097/FTD.0b013e31815c16f518043468