623
Views
10
CrossRef citations to date
0
Altmetric
Review

Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine

ORCID Icon
Pages 3881-3891 | Published online: 10 Sep 2021

References

  • ViseuA. Nanomedicine. Encyclopedia Britannica, 23 Sep. 2020; 2021. Available from:https://www.britannica.com/science/nanomedicine. Accessed 731, 2021.
  • FarokhzadOC, LangerR. Impact of Nanotechnology on drug delivery. ACS Nano. 2009;3(1):1–7. doi:10.1021/nn900002m
  • JulianoR. Nanomedicine: is the wave cresting?Nat Rev Drug Discov. 2013;12(3):171–172. doi:10.1038/nrd395823449291
  • WagnerV, DullaartA, BockAK, ZweckA. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–1217. doi:10.1038/nbt1006-121117033654
  • ParkK. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7(9):7442–7447. doi:10.1021/nn404501g24490875
  • TomehMA, ZhaoX. Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol Pharm. 2020;17(12):4421–4434. doi:10.1021/acs.molpharmaceut.0c0091333213144
  • RiahiR, TamayolA, ShaeghSAM, GhaemmaghamiAM, DokmeciMR, KhademshosseiniA. Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng. 2015;7:101–112. doi:10.1016/j.coche.2014.12.00131692947
  • KwakB, OzcelikkaleA, ShinCS, ParkK, HanB. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. J Control Release. 2014;194:157–167. doi:10.1016/j.jconrel.2014.08.02725194778
  • ShamsiM, ZahediP, GhourchianH, MinaeianS. Microfluidic-aided fabrication of nanoparticles blend based on chitosan for a transdermal multidrug delivery application. Int J Biol Macromol. 2017;99:433–442. doi:10.1016/j.ijbiomac.2017.03.01328274863
  • AhnJ, KoJ, LeeS, YuJ, KimYT, JeonNL. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv Drug Deliv Rev. 2018;128:29–53. doi:10.1016/j.addr.2018.04.00129626551
  • ZhaoX, LiuY, YuY, et al. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. Nanoscale. 2018;10(26):12595–12604. doi:10.1039/c8nr03728k29938277
  • LiuD, ZhangH, FontanaF, HirvonenJT, SantosHA. Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip. 2017;17(11):1856–1883. doi:10.1039/C7LC00242D28480462
  • BerklandC, KingM, CoxA, KimK, PackDW. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release. 2002;82(1):137–147. doi:10.1016/S0168-3659(02)00136-012106984
  • DuncansonWJ, LinT, AbateAR, SeiffertS, ShahRK, WeitzDA. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip. 2012;12(12):2135–2145. doi:10.1039/c2lc21164e22510961
  • AraújoF, ShresthaN, ShahbaziMA, et al. Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs. ACS Nano. 2015;9(8):8291–8302. doi:10.1021/acsnano.5b0276226235314
  • StuartMAC, HuckWTS, GenzerJ, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9(2):101–113. doi:10.1038/nmat261420094081
  • ZhaoCX. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev. 2013;65(11–12):1420–1446. doi:10.1016/j.addr.2013.05.00923770061
  • MuraS, NicolasJ, CouvreurP. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003. doi:10.1038/nmat377624150417
  • HuangX, LeeRJ, QiY, et al. Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget. 2017;8(57):96826–96836. doi:10.18632/oncotarget.1828129228574
  • LinYS, HuangKS, YangCH, et al. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One. 2012;7(3):4–11. doi:10.1371/journal.pone.0033184
  • KarnikR, GuF, BastoP, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles Rohit. Nano Lett. 2008;8(9):2906–2912. doi:10.1021/nl801736q18656990
  • TahirN, MadniA, LiW, et al. Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int J Pharm. 2020;581:119275. doi:10.1016/j.ijpharm.2020.11927532229283
  • TasciME, DedeB, TabakE, et al. Production, optimization and characterization of polylactic acid microparticles using electrospray with porous structure. Appl Sci. 2021;11(11):1–13. doi:10.3390/app11115090
  • FantiniD, ZanettiM, CostaL. Polystyrene microspheres and nanospheres produced by electrospray. Macromol Rapid Commun. 2006;27(23):2038–2042. doi:10.1002/marc.200600532
  • XuY, HannaMA. Electrospray encapsulation of water-soluble protein with polylactide: effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm. 2006;320(1):30–36. doi:10.1016/j.ijpharm.2006.03.04616697538
  • HennequinY, PannacciN, De TorresCP, et al. Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir. 2009;25(14):7857–7861. doi:10.1021/la900444919594177
  • WhitesidesGM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–373. doi:10.1038/nature0505816871203
  • TokeshiM, SatoK. Micro/nano devices for chemical analysis. Micromachines. 2016;7(9):6–8. doi:10.3390/mi7090164
  • HuhD, MatthewsBD, MammotoA, Montoya-ZavalaM, HsinHY, IngberDE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662LP– 1668. doi:10.1126/science.118830220576885
  • BhiseNS, RibasJ, ManoharanV, et al. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release. 2014;190:82–93. doi:10.1016/j.jconrel.2014.05.00424818770
  • MaoK, MinX, ZhangH, et al. Paper-based microfluidics for rapid diagnostics and drug delivery. J Control Release. 2020;322:187–199. doi:10.1016/j.jconrel.2020.03.01032169536
  • MengL, DengZ, NiuL, CaiF, ZhengH. Controlled thermal-sensitive liposomes release on a disposable microfluidic device. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS; 11, 2015:5912–5915. doi: 10.1109/EMBC.2015.7319737.
  • RheeMS, GalivanJ, WrightJE, RosowskyA. Biochemical studies on PT523, a potent nonpolyglutamatable antifolate, in cultured cells. Mol Pharmacol. 1994;45(4):783–791. PMID:7514264.7514264
  • SanjayST, DouM, FuG, XuF, LiX. Controlled drug delivery using microdevices. Curr Pharm Biotechnol. 2016;17(9):772–787. doi:10.2174/138920101766616012711044026813304
  • SanjayST, ZhouW, DouM, et al. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev. 2018;128:3–28. doi:10.1016/j.addr.2017.09.01328919029
  • ChiangWL, KeCJ, LiaoZX, et al. Pulsatile drug release from PLGA hollow microspheres by controlling the permeability of their walls with a magnetic field. Small. 2012;8(23):3584–3588. doi:10.1002/smll.20120174322893436
  • ThorsenT, RobertsRW, ArnoldFH, QuakeSR. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett. 2001;86(18):4163–4166. doi:10.1103/PhysRevLett.86.416311328121
  • NisisakoT, ToriiT, HiguchiT. Droplet formation in a microchannel network. Lab Chip. 2002;2(1):24–26. doi:10.1039/b108740c15100856
  • ZhangH, LiuY, WangJ, ShaoC, ZhaoY. Tofu-inspired microcarriers from droplet microfluidics for drug delivery. Sci China Chem. 2019;62(1):87–94. doi:10.1007/s11426-018-9340-y
  • NieZ, XuS, SeoM, LewisPC, KumachevaE. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc. 2005;127(22):8058–8063. doi:10.1021/ja042494w15926830
  • KimJ-W, Fernández-NievesA, DanN, UtadaAS, MarquezM, WeitzDA. Colloidal assembly route for responsive colloidosomes with tunable permeability. Nano Lett. 2007;7(9):2876–2880. doi:10.1021/nl071594817676811
  • De GeestBG, UrbanskiJP, ThorsenT, DemeesterJ, De SmedtSC. Synthesis of monodisperse biodegradable microgels in microfluidic devices. Langmuir. 2005;21(23):10275–10279. doi:10.1021/la051527y16262275
  • TanWH, TakeuchiS. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater. 2007;19(18):2696–2701. doi:10.1002/adma.200700433
  • Clausell-TormosJ, LieberD, BaretJC, et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol. 2008;15(5):427–437. doi:10.1016/j.chembiol.2008.04.00418482695
  • ChangJ-Y, YangC-H, HuangK-S. Microfluidic assisted preparation of CdSe/ZnS nanocrystals encapsulated into poly(DL-lactide-co-glycolide) microcapsules. Nanotechnology. 2007;18(30):305305. doi:10.1088/0957-4484/18/30/305305
  • BrzezińskiM, SockaM, KostB. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. Polym Int. 2019;68(6):997–1014. doi:10.1002/pi.5753
  • BrzezińskiM, SockaM, MakowskiT, KostB, CieślakM, Królewska-GolińskaK. Microfluidic-assisted nanoprecipitation of biodegradable nanoparticles composed of PTMC/PCL (co)polymers, tannic acid and doxorubicin for cancer treatment. Colloids Surf B Biointerfaces. 2021;201:111598. doi:10.1016/j.colsurfb.2021.11159833618081
  • BeckerH, GärtnerC. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000;21(1):12–26. doi:10.1002/(sici)1522-2683(20000101)21:1<1210634467
  • JoBH, Van LerbergheLM, MotsegoodKM, BeebeDJ. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst. 2000;9(1):76–81. doi:10.1109/84.825780
  • XiaY, WhitesidesGM. Soft lithography. Angew Chemie Int Ed. 1998;37(5):550–575. doi:10.1002/(sici)1521-3773(19980316)37:5<550
  • GuerinLJ, BosselM, DemierreM, CalmesS, RenaudP. Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic. Proceedings of International Solid State Sensors and Actuators Conference. Vol. 2; 1997:1419–1422. doi:10.1109/sensor.1997.635730.
  • MescherMJ, SwanEEL, FieringJ, et al. Fabrication methods and performance of low-permeability microfluidic components for a miniaturized wearable drug delivery system. J Microelectromech Syst. 2009;18(3):501–510. doi:10.1109/JMEMS.2009.201548420852729
  • FieringJ, MescherMJ, Leary SwanEE, et al. Local drug delivery with a self-contained, programmable, microfluidic system. Biomed Microdevices. 2009;11(3):571–578. doi:10.1007/s10544-008-9265-519089621
  • SchomburgWK, AhrensR, BacherW, MartinJ, SaileV. AMANDA - surface micromachining, molding, and diaphragm transfer. Sens Actuators a Phys. 1999;76(1–3):343–348. doi:10.1016/S0924-4247(98)00292-1
  • RoggeT, RummlerZ, SchomburgWK. Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process. Sens Actuators a Phys. 2004;110(1–3):206–212. doi:10.1016/j.sna.2003.10.056
  • ZhaoX, BianF, SunL, CaiL, LiL, ZhaoY. Microfluidic generation of nanomaterials for biomedical applications. Small. 2020;16(9):1–19. doi:10.1016/j.sna.2003.10.056
  • Herranz-BlancoB, GinestarE, ZhangH, HirvonenJ, SantosHA. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. Int J Pharm. 2017;516(1–2):100–105. doi:10.1016/j.ijpharm.2016.11.02427840159
  • PessiJ, SantosHA, MiroshnykI, JoukoyliruusiJ, WeitzDA, MirzaS. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int J Pharm. 2014;472(1–2):82–87. doi:10.1016/j.ijpharm.2014.06.01224928131
  • OlanrewajuA, BeaugrandM, YafiaM, JunckerD. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip. 2018;18(16):2323–2347. doi:10.1039/c8lc00458g30010168
  • MartinsJP, TorrieriG, SantosHA. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv. 2018;15(5):469–479. doi:10.1080/17425247.2018.144693629508630
  • GaleBK, JafekAR, LambertCJ, et al. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions. 2018;3(3):60. doi:10.3390/inventions3030060
  • NiculescuAG, ChircovC, BîrcăAC, GrumezescuAM. Fabrication and applications of microfluidic devices: a review. Int J Mol Sci. 2021;22(4):1–26. doi:10.3390/ijms22042011
  • ChiesaE, DoratiR, PisaniS, et al. The microfluidic technique and the manufacturing of polysaccharide nanoparticles. Pharmaceutics. 2018;10(4):267. doi:10.3390/pharmaceutics10040267
  • Caldorera-MooreM, GuimardN, ShiL, RoyK. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv. 2010;7(4):479–495. doi:10.1517/1742524090357997120331355
  • BicudoRCS, SantanaMHA. Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: effects of non-solvents, organic phase flow rate, and HA concentration. Chem Eng Sci. 2012;84:134–141. doi:10.1016/j.ces.2012.08.010
  • ArduinoI, LiuZ, RahikkalaA, et al. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater. 2021;121(xxxx):566–578. doi:10.1016/j.actbio.2020.12.02433326887
  • DamiatiS, KompellaUB, DamiatiSA, KodziusR. Microfluidic devices for drug delivery systems and drug screening. Genes (Basel). 2018;9(2):103. doi:10.3390/genes9020103
  • LaityP, CassidyA, SkepperJ, JonesB, CameronR. Investigation into the intragranular structures of microcrystalline cellulose and pre-gelatinised starch. Eur J Pharm Biopharm. 2010;74(2):377–387. doi:10.1016/j.ejpb.2009.10.00619887108
  • ColuccioML, PerozzielloG, MalaraN, et al. Microfluidic platforms for cell cultures and investigations. Microelectron Eng. 2019;208:14–28. doi:10.1016/j.mee.2019.01.004
  • GrüllH, LangereisS. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release. 2012;161(2):317–327. doi:10.1016/j.jconrel.2012.04.04122565055
  • KimHJ, HuhD, HamiltonG, IngberDE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–2174. doi:10.1039/c2lc40074j22434367
  • LeTN, NguyenVA, BachGL, TranLD, CaoHH. Design and fabrication of a PDMS-based manual micro-valve system for microfluidic applications. Adv Polym Technol. 2020;2020:1–7. doi:10.1155/2020/2460212
  • KhanIU, SerraCA, AntonN, VandammeTF. Production of nanoparticle drug delivery systems with microfluidics tools. Expert Opin Drug Deliv. 2015;12(4):547–562. doi:10.1517/17425247.2015.97454725345543
  • LiuD, ZhangH, Herranz-BlancoB, et al. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery. Small. 2014;10(10):2029–2038. doi:10.1002/smll.20130374024616278
  • ZhangH, LiuD, ShahbaziMA, et al. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater. 2014;26(26):4497–4503. doi:10.1002/adma.20140095324737409
  • LiC, BobanM, TutejaA. Open-channel, water-in-oil emulsification in paper-based microfluidic devices. Lab Chip. 2017;17(8):1436–1441. doi:10.1039/C7LC00114B28322402
  • KimDY, JinSH, JeongSG, LeeB, KangKK, LeeCS. Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Sci Rep. 2018;8(1):1–11. doi:10.1038/s41598-018-26829-z29311619
  • ZhouW, FengM, ValadezA, LiXJ. One-step surface modification to graft DNA codes on paper: the method, mechanism, and its application. Anal Chem. 2020;92(10):7045–7053. doi:10.1021/acs.analchem.0c0031732207965
  • TrouillonR, GijsMAM. Dynamic electrochemical quantitation of dopamine release from a cells-on-paper system. RSC Adv. 2016;6(37):31069–31073. doi:10.1039/c6ra02487d
  • HuangKS, YangCH, WangYC, WangWT, LuYY. Microfluidic synthesis of vinblastine-loaded multifunctional particles for magnetically responsive controlled drug release. Pharmaceutics. 2019;11(5):212. doi:10.3390/pharmaceutics11050212
  • AmoyavB, BennyO. Microfluidic based fabrication and characterization of highly porous polymeric microspheres. Polymers (Basel). 2019;11:419. doi:10.3390/polym11030419
  • VasiliauskasR, LiuD, CitoS, et al. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl Mater Interfaces. 2015;7(27):14822–14832. doi:10.1021/acsami.5b0482426098382
  • ZhangL, ChenQ, MaY, SunJ. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater. 2019;3(1):107–120. doi:10.1021/acsabm.9b00853
  • XuQ, HashimotoM, DangTT, et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small. 2009;5(13):1575–1581. doi:10.1002/smll.20080185519296563
  • MaherS, SantosA, KumeriaT, et al. Multifunctional microspherical magnetic and pH responsive carriers for combination anticancer therapy engineered by droplet-based microfluidics. J Mater Chem B. 2017;5(22):4097–4109. doi:10.1039/C7TB00588A32264142
  • DashtimoghadamE, MirzadehH, TaromiFA, NyströmB. Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer (Guildf). 2013;54(18):4972–4979. doi:10.1016/j.polymer.2013.07.022
  • MuX, GanS, WangY, LiH, ZhouG. Stimulus-responsive vesicular polymer nano-integrators for drug and gene delivery. Int J Nanomedicine. 2019;14:5415–5434. doi:10.2147/IJN.S20355531409996
  • ChenW, MengF, ChengR, ZhongZ. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release. 2010;142(1):40–46. doi:10.1016/j.jconrel.2009.09.02319804803
  • PaasonenL, LaaksonenT, JohansC, YliperttulaM, KontturiK, UrttiA. Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Release. 2007;122(1):86–93. doi:10.1016/j.jconrel.2007.06.00917628159
  • GantaS, DevalapallyH, ShahiwalaA, AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204. doi:10.1016/j.jconrel.2007.12.01718261822
  • RanjanA, JacobsGC, WoodsDL, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release. 2012;158(3):487–494. doi:10.1016/j.jconrel.2011.12.01122210162
  • MengL, DengZ, NiuL, et al. A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound. Theranostics. 2015;5(11):1203–1213. doi:10.7150/thno.1229526379786
  • LiuD, ZhangH, CitoS, et al. Core/shell nanocomposites produced by superfast sequential microfluidic nanoprecipitation; 2017. Available from:http://pubs.acs.org. Accessed 16, 2017.
  • MorikawaY, TagamiT, HoshikawaA, OzekiT. The use of an efficient microfluidic mixing system for generating stabilized polymeric nanoparticles for controlled drug release. Biol Pharm Bull. 2018;41(6):899–907. doi:10.1248/bpb.b17-0103629863078
  • WangJ, ChenW, SunJ, et al. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles. Lab Chip. 2014;14(10):1673–1677. doi:10.1039/c4lc00080c24675980
  • Bazban-ShotorbaniS, DashtimoghadamE, KarkhanehA, Hasani-SadrabadiMM, JacobKI. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery. Langmuir. 2016;32(19):4996–5003. doi:10.1021/acs.langmuir.5b0464526938744
  • ChungJA, AndDK, EricksonD. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab Chip. 2008;8(2):330–338. doi:10.1021/acs.langmuir.5b0464518231674
  • SantiniJT, RichardsAC, ScheidtR, CimaMJ, LangerR. Microchips as controlled drug-delivery devices. Angew Chemie Int Ed. 2000;39(14):2396–2407. doi:10.1002/1521-3773(20000717)39