327
Views
17
CrossRef citations to date
0
Altmetric
Original Research

CpG Oligodeoxynucleotide Developed to Activate Primate Immune Responses Promotes Antitumoral Effects in Combination with a Neoantigen-Based mRNA Cancer Vaccine

, , , ORCID Icon & ORCID Icon
Pages 3953-3963 | Published online: 18 Sep 2021

References

  • BabuS, BlauveltCP, KumaraswamiV, NutmanTB. Cutting edge: diminished T cell TLR expression and function modulates the immune response in human filarial infection. J Immunol. 2006;176(7):3885–3889. doi:10.4049/jimmunol.176.7.388516547219
  • AlvarezY, ValeraI, MunicioC, et al. Eicosanoids in the innate immune response: TLR and non-TLR routes. Mediators Inflamm. 2010;2010:1–14. doi:10.1155/2010/201929
  • SuhHS, ZhaoML, ChoiN, BelbinTJ, BrosnanCF, LeeSC. TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology. 2009;392(2):246–259. doi:10.1016/j.virol.2009.07.00119646728
  • LaiCY, LiuYL, YuGY, et al. TLR7/8 agonists activate a mild immune response in rabbits through TLR8 but not TLR7. Vaccine. 2014;32(43):5593–5599. doi:10.1016/j.vaccine.2014.07.10425131730
  • ByadgiO, PuteriD, LeeJW, et al. The effect of TLR9 agonist CpG oligodeoxynucleotides on the intestinal immune response of cobia (Rachycentron canadum). J Immunol Res. 2014;2014:273284. doi:10.1155/2014/27328424991578
  • WilliamsonRD, McCarthyFP, KennyLC, McCarthyCM. Activation of a TLR9 mediated innate immune response in preeclampsia. Sci Rep. 2019;9(1):5920. doi:10.1038/s41598-019-42551-w30976066
  • HyerRN, JanssenRS. Immunogenicity and safety of a 2-dose hepatitis B vaccine, HBsAg/CpG 1018, in persons with diabetes mellitus aged 60–70 years. Vaccine. 2019;37(39):5854–5861. doi:10.1016/j.vaccine.2019.08.00531431412
  • MartinsonJA, TenorioAR, MontoyaCJ, et al. Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals. Immunology. 2007;120(4):526–535. doi:10.1111/j.1365-2567.2007.02530.x17343615
  • YamamotoY, SugimuraR, WatanabeT, et al. Class A CpG oligonucleotide priming rescues mice from septic shock via activation of platelet-activating factor acetylhydrolase. Front Immunol. 2017;8:1049. doi:10.3389/fimmu.2017.0104928912777
  • WangS, CamposJ, GallottaM, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8 + T cells. Proc Natl Acad Sci USA. 2016;113(46):E7240–E7249. doi:10.1073/pnas.160855511327799536
  • Sagiv-BarfiI, CzerwinskiDK, LevyS, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018;10(426):eaan4488. doi:10.1126/scitranslmed.aan448829386357
  • SahinU, KarikoK, TureciO. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780. doi:10.1038/nrd427825233993
  • MaloneRW, FelgnerPL, VermaIM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA. 1989;86(16):6077–6081. doi:10.1073/pnas.86.16.60772762315
  • KreiterS, VormehrM, van de RoemerN, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–696. doi:10.1038/nature1442625901682
  • SahinU, DerhovanessianE, MillerM, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–226. doi:10.1038/nature2300328678784
  • EtxeberriaI, BolanosE, QuetglasJI, et al. Intratumor adoptive transfer of IL-12 mRNA transiently engineered antitumor CD8(+) T cells. Cancer Cell. 2019;36(6):613–629 e7. doi:10.1016/j.ccell.2019.10.00631761658
  • HewittSL, BaileyD, ZielinskiJ, et al. Intratumoral IL12 mRNA Therapy promotes TH1 transformation of the tumor microenvironment. Clin Cancer Res. 2020;26(23):6284–6298. doi:10.1158/1078-0432.CCR-20-047232817076
  • HewittSL, BaiA, BaileyD, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36gamma, and OX40L mRNAs. Sci Transl Med. 2019;11(477):eaat9143. doi:10.1126/scitranslmed.aat914330700577
  • HuangH, WangY, LiQ, FeiX, MaH, HuR. miR-140-3p functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9. Cancer Lett. 2019;446:81–89. doi:10.1016/j.canlet.2019.01.00730660651
  • RichnerJM, HimansuS, DowdKA, et al. Modified mRNA vaccines protect against zika virus infection. Cell. 2017;169(1):176. doi:10.1016/j.cell.2017.03.016
  • KulkarniJA, CullisPR, van der MeelR. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146–157. doi:10.1089/nat.2018.072129683383
  • PardiN, HoganMJ, PorterFW, WeissmanD. mRNA vaccines - A new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. doi:10.1038/nrd.2017.24329326426
  • RichnerJM, HimansuS, DowdKA, et al. Modified mRNA vaccines protect against zika virus infection. Cell. 2017;168(6):1114–1125 e10. doi:10.1016/j.cell.2017.02.01728222903
  • VolpiC, FallarinoF, PallottaMT, et al. High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway. Nat Commun. 2013;4:1852. doi:10.1038/ncomms287423673637
  • BaiL, ChenW, ChenJ, et al. Heterogeneity of Toll-like receptor 9 signaling in B cell malignancies and its potential therapeutic application. J Transl Med. 2017;15(1):51. doi:10.1186/s12967-017-1152-528241765