239
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Oleanolic Acid Attenuates Morphine Withdrawal Symptoms in Rodents: Association with Regulation of Dopamine Function

ORCID Icon, , &
Pages 3685-3696 | Published online: 24 Aug 2021

References

  • LinL, XiW. Drug addiction in China. Ann N Y Acad Sci. 2008;1141:304–317. doi:10.1196/annals.1441.02518991965
  • CamiJ, FarreM. Drug addiction. N Engl J Med. 2003;349(10):975–986. doi:10.1056/NEJMra02316012954747
  • GoldsteinRZ, VolkowND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159(10):1642–1652. doi:10.1176/appi.ajp.159.10.164212359667
  • AlvarezV, ArttamangkulS, WilliamsJT. A RAVE about opioid withdrawal. Neuron. 2001;32(5):761–763. doi:10.1016/S0896-6273(01)00530-X11738021
  • GonzalezG, OlivetoA, KostenTR. Treatment of heroin (diamorphine) addiction: current approaches and future prospects. Drugs. 2002;62(9):1331–1343. doi:10.2165/00003495-200262090-0000412076182
  • KreekMJ, LaForgeKS, ButelmanE. Pharmacotherapy of addictions. Nat Rev Drug Discov. 2002;1(9):710–726. doi:10.1038/nrd89712209151
  • DavidH. Prescription drug addiction: the treatment challenge. Lancet. 2012;379(9810):17–18. doi:10.1016/S0140-6736(12)60007-522232799
  • GardnerEL. Addiction and brain reward and antireward pathways. AdvPsychosom Med. 2011;30:22–60. doi:10.1159/000324065
  • VolkowND, FowlerJS, WangGJ. The addicted human brain: insights from imaging studies. J Clin Invest. 2003;111(10):1444–1451. doi:10.1172/JCI1853312750391
  • VolkowND, LiTK. Drugs and alcohol: treating and preventing abuse, addiction and their medical consequences. PharmacolTher. 2005;108(1):3–17.
  • HorsemanC, MeyerA. Neurobiology of Addiction. ClinObstet Gynecol. 2019;62(1):118–127. doi:10.1097/GRF.0000000000000416
  • AguilarMA, ManzanedoC, Do CoutoBR, Rodriguez-AriasM, MinarroJ. Memantine blocks sensitization to the rewarding effects of morphine. Brain Res. 2009;1288:95–104. doi:10.1016/j.brainres.2009.06.10019596276
  • NestlerEJ, AghajanianGK. Molecular and cellular basis of addiction. Science. 1997;278(5335):58–63. doi:10.1126/science.278.5335.589311927
  • ZhuYP, LongZH, ZhengML, BinsackR. Effect of glycine site/NMDA receptor antagonist MRZ2/576 on the conditioned place preference and locomotor activity induced by morphine in mice. J Zhejiang UnivSci B. 2006;7(12):998–1005. doi:10.1631/jzus.2006.B0998
  • HuangJB, YangQH, ChenYX, et al. Detoxification-used traditional Chinese medicine composition and preparation method thereof. National Intellectual Property Administration of China; 2013. Available from:http://pss-system.cnipa.gov.cn/sipopublicsearch/patentsearch/showViewList-jumpToView.shtml. Accessed 811, 2021.
  • LiuJ. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol. 1995;49(2):57–68. doi:10.1016/0378-8741(95)90032-28847885
  • LiuJ. Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol. 2005;100(1–2):92–94. doi:10.1016/j.jep.2005.05.02415994040
  • DzubakP, HajduchM, VydraD, et al. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006;23(3):394–411. doi:10.1039/b515312n16741586
  • PollierJ, GoossensA. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi:10.1016/j.phytochem.2011.12.02222377690
  • SomovaL, ShodeFO, RamnananP, NadarA. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J Ethnopharmacol. 2003;84(2–3):299–305. doi:10.1016/S0378-8741(02)00332-X12648829
  • GuiB, HuaF, ChenJ, XuZ, SunH, QianY. Protective effects of pretreatment with oleanolic acid in rats in the acute phase of hepatic ischemiareperfusion injury: role of the PI3K/Akt pathway. Mediators Inflamm. 2014;2014:451826. doi:10.1155/2014/45182624829521
  • LitaoY, JingL, QingL, et al. Antidepressant-like effect of oleanolic acid in rats exposed to the repeated forced swimming test. J Psychopharm. 2013;27(5):459–468. doi:10.1177/0269881112467090
  • LiuY, HanM, LiuX, et al. Dopamine transporter availability in heroin-dependent subjects and controls: longitudinal changes during abstinence and the effects of Jitai tablets treatment. Psychopharmacology. 2013;230(2):235–244. doi:10.1007/s00213-013-3148-z23715641
  • LiuJ, GaoJL, TuSA, et al. Neuroprotective Effects of Jitai Tablet, a Traditional Chinese Medicine, on the MPTP-Induced Acute Model of Parkinson’s Disease: involvement of the Dopamine System. Evid Based Complement Alternat Med. 2014;2014:542383. doi:10.1155/2014/54238324799940
  • FanHY, SunL, LiXX, et al. Effects of Jitai tablet, a traditional Chinese medicine, on plasma adrenocorticotropic hormone and cortisol levels in heroin addicts during abstinence. J Altern Complement Med. 2014;20(7):527–534. doi:10.1089/acm.2012.080424786196
  • XuSS, TuSA, GaoJL, et al. Protective and restorative effects of the traditional Chinese medicine Jitai tablet against methamphetamine-induced dopaminergic neurotoxicity. BMC Complement Altern Med. 2018;18(1):76. doi:10.1186/s12906-018-2094-z29475448
  • LefevreEM, PisanskyMT, ToddesC, et al. Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology. 2020;45(11):1781–1792. doi:10.1038/s41386-020-0643-x32079024
  • WenD, ZhaoP, HuiR, et al. Hydrogen-rich saline attenuates anxiety-like behaviors in morphine-withdrawn mice. Neuropharmacology. 2017;118:199–208. doi:10.1016/j.neuropharm.2017.03.02928359771
  • Kourosh-AramiM, JoghataeiMT, KomakiA, GholamiM, NajafiZ, LavaieM. Persistent effects of the orexin-1 receptor antagonist SB-334867 on naloxone precipitated morphine withdrawal symptoms and nociceptive behaviors in morphine dependent rats. Int J Neurosci. 2020;11:1–10. doi:10.1080/00207454.2020.1802266
  • Harvey-LewisC, BriseboisAD, YongH, FranklinKB. Naloxone-precipitated withdrawal causes an increase in impulsivity in morphine-dependent rats. BehavPharmacol. 2015;26(3):326–329. doi:10.1097/FBP.0000000000000106
  • ZhangQ. Research Methodology of Chinese Medicine Pharmacology. Beijing, China: People’s Medical Press; 1993:909–910.
  • KasangaEA, Boakye-GyasiE, BineyRP, KyekyekuJO, AgyareC, WoodeE. Geraniin attenuates naloxone-precipitated morphine withdrawal and morphine-induced tolerance in mice. J Intercult Ethnopharmacol. 2017;6(2):199–205. doi:10.5455/jice.2016122901541328507784
  • PedrónVT, VaraniAP, BalerioGN. Baclofen prevents the elevated plus maze behavior and BDNF expression during naloxone precipitated morphine withdrawal in male and female mice. Synapse. 2016;70(5):187–197. doi:10.1002/syn.2188626789010
  • MohsenI, RezaQ, MahmoudH, HosseinH. Inhibitory Effect of Berberis vulgaris Aqueous Extract on Acquisition and Reinstatement Effects of Morphine in Conditioned Place Preferences (CPP) in Mice. Jundishapur J Nat Pharm Prod. 2014;9(3):e16145. doi:10.17795/jjnpp-1614525237645
  • VahdatiHassaniF, HashemzaeiM, AkbariE, ImenshahidiM, HosseinzadehH. Effects of berberine on acquisition and reinstatement of morphine-induced conditioned place preference in rats. Avicenna J Phytomed. 2016;6(2):198–204.27222833
  • ZhangKG. Animal experimental methods for drug dependence. Chine J Drug Dependence. 1999;8(1):23–26.
  • AllahverdiyevO, TürkmenAZ, NurtenA, SehirliI, EnginarN. Spontaneous withdrawal in intermittent morphine administration in rats and mice: effect of clonidine coadministration and sex-related differences. Turk J Med Sci. 2015;45(6):1380–1389. doi:10.3906/sag-1408-13726775398
  • VasconcelosMA, RoyoVA, FerreiraDS, CrottiAE. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconiaalbicans (Melastomataceae). Z Naturforsch C J Biosci. 2006;61(7–8):477–482. doi:10.1515/znc-2006-7-80316989305
  • ParkSJ, LeeY, OhHK, et al. Oleanolic acid attenuates MK-801-induced schizophrenia-like behaviors in mice. Neuropharmacology. 2014;86:49–56. doi:10.1016/j.neuropharm.2014.06.02524997455
  • FajemiroyeJO, GaldinoPM, FlorentinoIF, et al. Plurality of anxiety and depression alteration mechanism by oleanolic acid. J Psychopharmacol. 2014;28(10):923–934. doi:10.1177/026988111453678924920136
  • LiY, van den PolAN. Mu-opioid receptor-mediated depression of the hypothalamic hypocretin/orexin arousal system. J Neurosci. 2008;28(11):2814–2819. doi:10.1523/JNEUROSCI.5447-07.200818337411
  • ThomazAC, IyerV, WoodwardTJ, HohmannAG. Fecal microbiota transplantation and antibiotic treatment attenuate naloxone-precipitated opioid withdrawal in morphine-dependent mice. Exp Neurol. 2021;343:113787. doi:10.1016/j.expneurol.2021.11378734153321
  • MorónJA, GullapalliS, TaylorC, GuptaA. Modulation of opiate related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology. 2010;35(4):955–966. doi:10.1038/npp.2009.19919956087
  • FarrellMR, SchochH, MahlerSV. Modeling cocaine relapse in rodents: behavioral considerations and circuit mechanisms. Prog Neuropsycho Pharmaco lBiol Psychiatry. 2018;87(Pt A):33–47. doi:10.1016/j.pnpbp.2018.01.002
  • JuarezB, HanMH. Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology. 2016;41(10):2424–2446. doi:10.1038/npp.2016.3226934955
  • RanaldiR. Dopamine and reward seeking: the role of ventral tegmental area. Rev Neurosci. 2014;25(5):621–630. doi:10.1515/revneuro-2014-001924887956
  • KalivasPW, VolkowND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–1413. doi:10.1176/appi.ajp.162.8.140316055761
  • ChildressAR, EhrmanR, McLellanAT, MacRaeJ, NataleM, O’BrienCP. Can induced moods trigger drug-related responses in opiate abuse patients?J Subst Abuse Treat. 1994;11(1):17–23. doi:10.1016/0740-5472(94)90060-48201629
  • MurphySM, McCollisterKE, LeffJA, et al. Cost-Effectiveness of Buprenorphine-Naloxone Versus Extended-Release Naltrexone to Prevent Opioid Relapse. Ann Intern Med. 2019;170(2):90–98. doi:10.7326/M18-022730557443
  • XingB, LiYC, GaoWJ. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res. 2016;1641(Pt B):217–233. doi:10.1016/j.brainres.2016.01.00526790349
  • ChenW, NongZ, LiY, HuangJ, ChenC, HuangL. Role of Dopamine Signaling in Drug Addiction. Curr Top Med Chem. 2017;17(21):2440–2455. doi:10.2174/156802661766617050410064228474551
  • SolinasM, BelujonP, FernagutPO, JaberM, ThirietN. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm. 2019;126(4):481–516. doi:10.1007/s00702-018-1957-230569209
  • Ahmadi-SoleimaniSM, Ghaemi-JandabiM, AziziH, SemnanianS. Orexin type 1 receptor antagonism in Lateral Paragigantocellularis nucleus attenuates naloxone precipitated morphine withdrawal symptoms in rats. Neurosci Lett. 2014;558:62–66. doi:10.1016/j.neulet.2013.10.06424211689
  • HarrisGC, Aston-JonesG. Augmented accumbal serotonin levels decrease the preference for a morphine associated environment during withdrawal. Neuropsychopharmacology. 2001;24(1):75–85. doi:10.1016/S0893-133X(00)00184-611106878
  • Ahmadi-SoleimaniSM, AziziH, GompfHS, SemnanianS. Role of orexin type-1 receptors in paragiganto-coerulear modulation of opioid withdrawal and tolerance: a site specific focus. Neuropharmacology. 2017;126:25–37. doi:10.1016/j.neuropharm.2017.08.02428826827
  • Ghaemi-JandabiM, AziziH, Ahmadi-SoleimaniSM, SemnanianS. Intracoerulear microinjection of orexin-A induces morphine withdrawal-like signs in rats. Brain Res Bull. 2017;130:107–111. doi:10.1016/j.brainresbull.2017.01.01028093335
  • HarrisGC, WimmerM, ByrneR, Aston-JonesG. Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience. 2004;129(3):841–847. doi:10.1016/j.neuroscience.2004.09.01815541905
  • ParkSH, SimYB, KangYJ, et al. Mechanisms involved in the antinociceptive effects of orally administered oleanolic acid in the mouse. Arch Pharm Res. 2013;36(7):905–911. doi:10.1007/s12272-013-0093-723515934
  • YunminL, MeiyingZ, WeiC, et al. Oleanolic acid induces apoptosis of MKN28 cells via AKT and JNKsignaling pathways. Pharm Biol. 2014;52(6):789–795. doi:10.3109/13880209.2013.86468324824325