1,146
Views
31
CrossRef citations to date
0
Altmetric
Review

Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review

, , ORCID Icon, , & ORCID Icon
Pages 4713-4732 | Published online: 20 Nov 2021

References

  • LopezEO, BallardBD, JanA. Cardiovascular Disease. StatPearls; 2020.
  • JafarTH, QadriZ, ChaturvediN. Coronary artery disease epidemic in Pakistan: more electrocardiographic evidence of ischaemia in women than in men. Heart. 2008;94(4):408–413. doi:10.1136/hrt.2007.12077417646192
  • BigluM-H, GhavamiM, BigluS. Cardiovascular diseases in the mirror of science. J Cardiovasc Thor Res. 2016;8(4):158. doi:10.15171/jcvtr.2016.32
  • NazonE. An overview of cardiovascular disease and research. WR-467-RS; 2007.
  • Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35:2950–2959. doi:10.1093/eurheartj/ehu299.
  • YusufS, WoodD, RalstonJ, ReddyKS. The World Heart Federation’s vision for worldwide cardiovascular disease prevention. Lancet. 2015;386(9991):399–402. doi:10.1016/S0140-6736(15)60265-325892680
  • MensahGA, RothGA, FusterV. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. Washington, DC: American College of Cardiology Foundation; 2019.
  • ZubairF, NawazSK, NawazA, NangyalH, AmjadN, KhanMS. Prevalence of cardiovascular diseases in Punjab, Pakistan: a cross-sectional study. J Public Health (Bangkok). 2018;26(5):523–529. doi:10.1007/s10389-018-0898-4
  • YusufS, IslamS, ChowCK, et al. Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): a prospective epidemiological survey. Lancet. 2011;378(9798):1231–1243. doi:10.1016/S0140-6736(11)61215-421872920
  • Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham heart study and the epidemiology of cardiovascular disease: A historical perspective. Lancet. 2014;383(9921):999–1008. doi:10.1016/S0140-6736(13)61752-3
  • Rodriguez-AraujoG, NakagamiH. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc Endocrinol Metabol. 2018;7(1):4. doi:10.1097/XCE.0000000000000141
  • SitiHN, KamisahY, KamsiahJ. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015;71:40–56. doi:10.1016/j.vph.2015.03.00525869516
  • MorisD, SpartalisM, SpartalisE, et al. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med. 2017;5:16.28164101
  • ShayganniE, BahmaniM, AsgaryS, Rafieian-KopaeiM. Inflammaging and cardiovascular disease: management by medicinal plants. Phytomedicine. 2016;23(11):1119–1126. doi:10.1016/j.phymed.2015.11.00426776956
  • PetrieJR, GuzikTJ, TouyzRM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–584. doi:10.1016/j.cjca.2017.12.00529459239
  • KimJH, ShahP, TantryUS, GurbelPA. Coagulation abnormalities in heart failure: pathophysiology and therapeutic implications. Curr Heart Fail Rep. 2016;13(6):319–328. doi:10.1007/s11897-016-0308-627815681
  • DenhamNC, PearmanCM, CaldwellJL, et al. Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. 2018;9:1380.30337881
  • ScottJ. Pathophysiology and biochemistry of cardiovascular disease. Curr Opin Genet Dev. 2004;14(3):271–279. doi:10.1016/j.gde.2004.04.01215172670
  • GisteråA, HanssonGK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368. doi:10.1038/nrneph.2017.5128392564
  • KattoorAJ, PothineniNVK, PalagiriD, MehtaJL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):1–11. doi:10.1007/s11883-017-0678-628097467
  • LiL, ZhouX, LiN, SunM, LvJ, XuZ. Herbal drugs against cardiovascular disease: traditional medicine and modern development. Drug Discov Today. 2015;20(9):1074–1086. doi:10.1016/j.drudis.2015.04.00925956424
  • GunjanM, NaingTW, SainiRS, AhmadA, NaiduJR, KumarI. Marketing trends & future prospects of herbal medicine in the treatment of various disease. World J Pharm Res. 2015;4(9):132–155.
  • KhanA, SafdarM. Role of diet, nutrients, spices and natural products in diabetes mellitus. Pak J Nutri. 2003;2:1–12.
  • HaslamE. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod. 1996;59(2):205–215.8991956
  • SunJ, TanBK, HuangS-H, WhitemanM, ZhuY-Z. Effects of natural products on ischemic heart diseases and cardiovascular system. Acta Pharmacol Sin. 2002;23(12):1142–1151.12466052
  • Rai AK, Debetto P, Sala FD. Molecular regulation of cholesterol metabolism: HDL-based intervention through drugs and diet. Indian J Exp Biol. 2013;51(11):885–894.
  • VasanthiR, ShriShriMalN, DasDK. Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem. 2012;19(14):2242–2251. doi:10.2174/09298671280022907822414106
  • DavidB, WolfenderJ-L, DiasDA. The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev. 2015;14(2):299–315. doi:10.1007/s11101-014-9367-z
  • GuJ, GuiY, ChenL, YuanG, XuX. CVDHD: a cardiovascular disease herbal database for drug discovery and network pharmacology. J Cheminform. 2013;5(1):1–6. doi:10.1186/1758-2946-5-5123289532
  • DuG, SunL, ZhaoR, et al. Polyphenols: potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther. 2016;162:23–34. doi:10.1016/j.pharmthera.2016.04.00827113411
  • ChangX, ZhangT, ZhangW, ZhaoZ, SunJ. Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxid Med Cell Longev. 2020;2020:1–20. doi:10.1155/2020/5430407
  • TesfayeBA, BerheAH, WondafrashDZ, BerheDF. Cardioprotective effect of crude extract and solvent fractions of urtica simensis leaves on cyclophosphamide-induced myocardial injury in rats. J Exp Pharmacol. 2021;13:147. doi:10.2147/JEP.S27003833628065
  • Khan J, Deb PK, Priya S, et al. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules. 2021;26(13):4021. doi:10.3390/molecules26134021
  • Naithani R, Mehta RG, Shukla D, Chandersekera SN, Moriarty RM. Antiviral Activity of Phytochemicals: A Current Perspective. Dietary Components and Immune Function. 2010:421–468. doi:10.1007/978-1-60761-061-8_24.
  • Tresserra-Rimbau A, Arranz S, Vallverdu-Queralt A. New Insights into the Benefits of Polyphenols in Chronic Diseases. Oxidative Medicine and Cellular Longevity. 2017;2017:Article ID 1432071. doi:10.1155/2017/1432071
  • MichalskaM, GlubaA, MikhailidisDP, et al. The role of polyphenols in cardiovascular disease. Med Sci Monitor. 2010;16:5.
  • SaidMM, AzabSS, SaeedNM, El-DemerdashE. Antifibrotic mechanism of pinocembrin: impact on oxidative stress, inflammation and TGF-β/Smad inhibition in rats. Ann Hepatol. 2018;17(2):307–317. doi:10.5604/01.3001.0010.866229469035
  • AlamM, KauterK, BrownL. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients. 2013;5(3):637–650. doi:10.3390/nu503063723446977
  • Giudetti AM, Salzet M, Cassano T. Oxidative Stress in Aging Brain: Nutritional and Pharmacological Interventions for Neurodegenerative Disorders. Oxidative Medicine and Cellular Longevity. 2018;2018:Article ID 3416028. doi:10.1155/2018/3416028
  • ZhangS, XuM, ZhangW, LiuC, ChenS. Natural polyphenols in metabolic syndrome: protective mechanisms and clinical applications. Int J Mol Sci. 2021;22(11):6110. doi:10.3390/ijms2211611034204038
  • LiuK, LuoM, WeiS. The bioprotective effects of polyphenols on metabolic syndrome against oxidative stress: evidences and perspectives. Oxid Med Cell Longev. 2019;2019:6713194. doi:10.1155/2019/671319431885810
  • Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr. 2005;93(2):257–266. doi:10.1079/bjn20041327
  • MennenLI, WalkerR, Bennetau-PelisseroC, ScalbertA. Risks and safety of polyphenol consumption. Am J Clin Nutr. 2005;81(1):326S–329S. doi:10.1093/ajcn/81.1.326S15640498
  • OfosuFK, DaliriEB-M, ElahiF, ChelliahR, LeeB-H, OhD-H. New insights on the use of polyphenols as natural preservatives and their emerging safety concerns. Front Sustain Food Syst. 2020;4:223. doi:10.3389/fsufs.2020.525810
  • Żwierełło W, Maruszewska A, Skórka-Majewicz M, et al. The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review. Chemosphere. 2020;240:124901. doi:10.1016/j.chemosphere.2019.124901
  • RayS, BagchiD, LimPM, et al. Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol. 2001;109(3–4):165–197.11758648
  • CerdáB, CerónJJ, Tomás-BarberánFA, EspínJC. Repeated oral administration of high doses of the pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J Agric Food Chem. 2003;51(11):3493–3501. doi:10.1021/jf020842c12744688
  • GomesIBS, PortoML, SantosMCLFS, et al. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice. Front Physiol. 2015;6:247. doi:10.3389/fphys.2015.0024726388784
  • CatterallF, SouquetJM, CheynierV, et al. Differential modulation of the genotoxicity of food carcinogens by naturally occurring monomeric and dimeric polyphenolics. Environ Mol Mutagen. 2000;35(2):86–98. doi:10.1002/(SICI)1098-2280(2000)35:2<86::AID-EM3>3.0.CO;2-B10712742
  • LutzU, LugliS, BitschA, SchlatterJ, LutzWK. Dose response for the stimulation of cell division by caffeic acid in forestomach and kidney of the male F344 rat. Toxicol Sci. 1997;39(2):131–137. doi:10.1093/toxsci/39.2.131
  • ZhuB, LiehrJG. Quercetin increases the severity of estradiol-induced tumorigenesis in hamster kidney. Toxicol Appl Pharmacol. 1994;125(1):149–158. doi:10.1006/taap.1994.10598128490
  • SakihamaY, CohenMF, GraceSC, YamasakiH. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002;177(1):67–80. doi:10.1016/S0300-483X(02)00196-812126796
  • DuoJ, Ying-G-G, WangG-W, ZhangL. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol Med Rep. 2012;5(6):1453–1456.22447039
  • TemmeE, Van HoydonckP. Tea consumption and iron status. Eur J Clin Nutr. 2002;56(5):379–386. doi:10.1038/sj.ejcn.160130912001007
  • GodosJ, MarventanoS, MistrettaA, GalvanoF, GrossoG. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int J Food Sci Nutr. 2017;68(6):750–756. doi:10.1080/09637486.2017.128587028276907
  • ArtsIC, HollmanPC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81(1):317S–325S. doi:10.1093/ajcn/81.1.317S15640497
  • DebnathS, TejovathiR, BabuN, KumarTH. An overview on food & drug interactions. Pharm Times. 2017;49(4):9–15.
  • HungCH, ChanSH, ChuPM, TsaiKL. Quercetin is a potent anti‐atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol Nutr Food Res. 2015;59(10):1905–1917. doi:10.1002/mnfr.20150014426202455
  • BasuA, DasAS, MajumderM, MukhopadhyayR. Antiatherogenic roles of dietary flavonoids chrysin, quercetin, and luteolin. J Cardiovasc Pharmacol. 2016;68(1):89–96. doi:10.1097/FJC.000000000000038027385185
  • DengY, TuY, LaoS, et al. The role and mechanism of citrus flavonoids in cardiovascular diseases prevention and treatment. Crit Rev Food Sci Nutr. 2021;10:1–24.
  • BhaskarS, KumarKS, KrishnanK, AntonyH. Quercetin alleviates hypercholesterolemic diet induced inflammation during progression and regression of atherosclerosis in rabbits. Nutrition. 2013;29(1):219–229. doi:10.1016/j.nut.2012.01.01922595451
  • KleemannR, VerschurenL, MorrisonM, et al. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis. 2011;218(1):44–52. doi:10.1016/j.atherosclerosis.2011.04.02321601209
  • LuoM, TianR, LuN. Quercetin inhibited endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice: critical roles for NADPH oxidase and heme oxygenase-1. J Agric Food Chem. 2020;68(39):10875–10883. doi:10.1021/acs.jafc.0c0390732880455
  • ZahediM, GhiasvandR, FeiziA, AsgariG, DarvishL. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med. 2013;4(7):777.24049596
  • FerenczyovaK, KalocayovaB, BartekovaM. Potential implications of quercetin and its derivatives in cardioprotection. Int J Mol Sci. 2020;21(5):1585. doi:10.3390/ijms21051585
  • Cancer IAfRo. Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances. IARC Monographs Eval Carcinogenic Risks Humans. 1999;73:131–182.
  • ManachC, WilliamsonG, MorandC, ScalbertA, RémésyC. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1):230S–242S. doi:10.1093/ajcn/81.1.230S15640486
  • KellyGS. Quercetin. Alter Med Rev. 2011;16(2):172–195.
  • DaubneyJ. The Cardioprotective Mechanisms of Dietary Flavonoids. Nottingham Trent University (United Kingdom); 2015.
  • WeeSL. The Effects of Elicitors and Precursor on in vitro Cultures of Sauropus Androgynus for Sustainable Metabolite Production and Antioxidant Capacity Improvement. University of Nottingham; 2015.
  • GanioMS, ArmstrongLE, JohnsonEC, et al. Effect of quercetin supplementation on maximal oxygen uptake in men and women. J Sports Sci. 2010;28(2):201–208. doi:10.1080/0264041090342855820054739
  • RezvanN, MoiniA, JananiL, et al. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: a randomized placebo-controlled double-blind clinical trial. Hormone Metabol Res. 2017;49(02):115–121.
  • MoghaddamRA, AkhtarM, MoghaddamAA, NajmiAK. Evaluation of cardioprotective effects of Camellia sinensis on isoproterenol induced myocardial infarction. Int J Pharm Sci Res. 2013;4(3):1056.
  • AlamMA, SubhanN, RahmanMM, UddinSJ, RezaHM, SarkerSD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advan Nutri. 2014;5(4):404–417. doi:10.3945/an.113.005603
  • MahmoudAM, Hernandez BautistaRJ, SandhuMA, HusseinOE. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid Med Cell Longev. 2019;2019. doi:10.1155/2019/5484138
  • BhartiS, RaniN, KrishnamurthyB, AryaDS. Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med. 2014;80(06):437–451. doi:10.1055/s-0034-136835124710903
  • Raja kumarS, Mohd RamliES, Abdul NasirNA, IsmailNHM, Mohd FahamiNA. Preventive effect of naringin on metabolic syndrome and its mechanism of action: a systematic review. Evid Based Compl Alter Med. 2019;2019:1–11. doi:10.1155/2019/9752826
  • ChenJ, GuoR, YanH, et al. Naringin inhibits ROS‐activated MAPK pathway in high glucose‐induced injuries in H9c2 cardiac cells. Basic Clin Pharmacol Toxicol. 2014;114(4):293–304. doi:10.1111/bcpt.1215324118820
  • DyckGJ, RajP, ZierothS, DyckJR, EzekowitzJA. The effects of resveratrol in patients with cardiovascular disease and heart failure: a narrative review. Int J Mol Sci. 2019;20(4):904. doi:10.3390/ijms20040904
  • RibaA, DeresL, SumegiB, TothK, SzabadosE. Cardioprotective effect of resveratrol in a postinfarction. Heart Fail Model. 2017;2017:6819281. doi:10.1155/2017/6819281
  • ZordokyBN, RobertsonIM, DyckJR. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta. 2015;1852(6):1155–1177. doi:10.1016/j.bbadis.2014.10.01625451966
  • Bonnefont-RousselotD. Resveratrol and cardiovascular diseases. Nutrients. 2016;8(5). doi:10.3390/nu8050250
  • ZhouY, LittlePJ, XuS, KamatoD. Curcumin inhibits lysophosphatidic acid mediated MCP-1 expression via blocking ROCK signalling. Molecules. 2021;26(8):2320. doi:10.3390/molecules2608232033923651
  • CobanD, MilenkovicD, ChanetA, et al. Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration. Mol Nutr Food Res. 2012;56(8):1270–1281. doi:10.1002/mnfr.20110081822753158
  • BarrySP, TownsendPA. What causes a broken heart—molecular insights into heart failure. Int Rev Cell Mol Biol. 2010;284:113–179.20875630
  • BaiX-J, HaoJ-T, WangJ, et al. Curcumin inhibits cardiac hypertrophy and improves cardiovascular function via enhanced Na+/Ca2+ exchanger expression after transverse abdominal aortic constriction in rats. Pharmacol Rep. 2018;70(1):60–68. doi:10.1016/j.pharep.2017.07.01429331788
  • LiuR, ZhangH, YangJ, WangJ, LiuJ, LiC. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur Rev Med Pharmacol Sci. 2018;22(21):7500–7508.30468499
  • MohammedHS, HosnyEN, KhadrawyYA, et al. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochimica et Biophysica Acta. 2020;1866(5):165665. doi:10.1016/j.bbadis.2020.16566531918005
  • SwamyAV, GulliayaS, ThippeswamyA, KotiBC, ManjulaDV. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol. 2012;44(1):73. doi:10.4103/0253-7613.9187122345874
  • HeH, ShiM, ZengX, et al. RETRACTED: Cardioprotective Effect of Salvianolic Acid B on Large Myocardial Infarction Mediated by Reversing Upregulation of Leptin, Endothelin Pathways, and Abnormal Expression of Serca2a, Phospholamban in Rats. Elsevier; 2008.
  • SunA, LiuH, WangS, et al. Salvianolic acid B suppresses maturation of human monocyte‐derived dendritic cells by activating PPARγ. Br J Pharmacol. 2011;164(8):2042–2053. doi:10.1111/j.1476-5381.2011.01518.x21649636
  • WangS-B, TianS, YangF, YangH-G, YangX-Y, DuG-H. Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. Eur J Pharmacol. 2009;615(1–3):125–132. doi:10.1016/j.ejphar.2009.04.06119445921
  • BhardwajP, KhannaD. Green tea catechins: defensive role in cardiovascular disorders. Chin J Nat Med. 2013;11(4):345–353. doi:10.1016/S1875-5364(13)60051-523845542
  • Anandh BabuP, SabithaK, ShyamaladeviC. Green tea extract impedes dyslipidaemia and development of cardiac dysfunction in streptozotocin‐diabetic rats. Clin Exp Pharmacol Physiol. 2006;33(12):1184–1189. doi:10.1111/j.1440-1681.2006.04509.x17184499
  • ReygaertWC. Green tea catechins: their use in treating and preventing infectious diseases. Biomed Res Int. 2018;2018:1–9. doi:10.1155/2018/9105261
  • ReisJP, LoriaCM, SteffenLM, et al. Coffee, decaffeinated coffee, caffeine, and tea consumption in young adulthood and atherosclerosis later in life: the CARDIA study. Arterioscler Thromb Vasc Biol. 2010;30(10):2059–2066. doi:10.1161/ATVBAHA.110.20828020616310
  • BondonnoNP, BondonnoCP, BlekkenhorstLC, et al. Flavonoid‐rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol Nutr Food Res. 2018;62(3):1700674. doi:10.1002/mnfr.201700674
  • LinX, ZhangI, LiA, et al. Cocoa flavanol intake and biomarkers for cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Nutr. 2016;146(11):2325–2333. doi:10.3945/jn.116.23764427683874
  • AfshinA, MichaR, KhatibzadehS, MozaffarianD. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100(1):278–288. doi:10.3945/ajcn.113.07690124898241
  • LarssonSC, ÅkessonA, GiganteB, WolkA. Chocolate consumption and risk of myocardial infarction: a prospective study and meta-analysis. Heart. 2016;102(13):1017–1022. doi:10.1136/heartjnl-2015-30920326936339
  • ArabL, LiuW, ElashoffD. Green and black tea consumption and risk of stroke: a meta-analysis. Stroke. 2009;40(5):1786–1792. doi:10.1161/STROKEAHA.108.53847019228856
  • RatherSA, SaravananN. Protective effect of gallic acid on immobilization induced stress in encephalon and myocardium of male albino Wistar rats. Int J Nutri Pharmacol Neurol Dis. 2013;3(3):269. doi:10.4103/2231-0738.114854
  • KulkarniJ, SwamyAV. Cardioprotective effect of gallic acid against doxorubicin-induced myocardial toxicity in albino rats. Ind J Health Sci Biomed Res. 2015;8(1):28.
  • SathyapalanT, AyeM, RigbyA, et al. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutri Metabol Cardiovasc Dis. 2018;28(7):691–697. doi:10.1016/j.numecd.2018.03.007
  • WenzelU, FuchsD, DanielH. Protective effects of soy-isoflavones in cardiovascular disease. Hämostaseologie. 2008;28(01/02):85–88. doi:10.1055/s-0037-161692718278168
  • KoK-P. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev. 2014;15(17):7001–7010. doi:10.7314/APJCP.2014.15.17.700125227781
  • AgunloyeOM, ObohG, AdemiluyiAO, et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother. 2019;109:450–458. doi:10.1016/j.biopha.2018.10.04430399581
  • Murtaza G, Sajjad A, Mehmood Z, Shah SH, Siddiqi AR. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer. J Food Drug Anal. 2015;23(1):11–18. doi:10.1016/j.jfda.2014.06.001
  • SilvaH, LopesNMF. Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review. Front Physiol. 2020;11. doi:10.3389/fphys.2020.59551632116739
  • RazaniZ, DastaniM, KazeraniHR. Cardioprotective effects of pomegranate (Punica granatum) juice in patients with ischemic heart disease. Phytother Res. 2017;31(11):1731–1738. doi:10.1002/ptr.590128913846
  • CaoH, XuH, ZhuG, LiuS. Isoquercetin ameliorated hypoxia/reoxygenation-induced H9C2 cardiomyocyte apoptosis via a mitochondrial-dependent pathway. Biomed Pharmacother. 2017;95:938–943. doi:10.1016/j.biopha.2017.08.12828915535
  • KongQ, MaX, WangC, et al. Patients with acute ischemic cerebrovascular disease with coronary artery stenosis have more diffused cervicocephalic atherosclerosis. J Atheroscler Thromb. 2019;26:47464.
  • ZhangL, GuoZ, WangY, GengJ, HanS. The protective effect of kaempferol on heart via the regulation of Nrf2, NF‐κβ, and PI3K/Akt/GSK‐3β signaling pathways in isoproterenol‐induced heart failure in diabetic rats. Drug Dev Res. 2019;80(3):294–309. doi:10.1002/ddr.2149530864233
  • DurazzoA, LucariniM, SantiniA. Nutraceuticals in Human Health. Foods. 2020;9(3):370. doi:10.3390/foods9030370
  • Tresserra-RimbauA, RimmEB, Medina-RemónA, et al. Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial. BMC Med. 2014;12:77. doi:10.1186/1741-7015-12-7724886552
  • Tresserra-RimbauA, RimmEB, Medina-RemónA, et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis. 2014;24(6):639–647. doi:10.1016/j.numecd.2013.12.01424552647
  • DurazzoA, LucariniM, SoutoEB, et al. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res. 2019;33(9):2221–2243. doi:10.1002/ptr.641931359516
  • SinglaRK, DubeyAK, GargA, et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int. 2019;102(5):1397–1400. doi:10.5740/jaoacint.19-013331200785
  • GormazJG, VallsN, SotomayorC, TurnerT, RodrigoR. Potential role of polyphenols in the prevention of cardiovascular diseases: molecular bases. Curr Med Chem. 2016;23(2):115–128. doi:10.2174/092986732366615112720173226630919
  • CoryH, PassarelliS, SzetoJ, TamezM, MatteiJ. The role of polyphenols in human health and food systems: a mini-review. Front Nutr. 2018;5:Article 87. doi:10.3389/fnut.2018.0008730298133