3,775
Views
131
CrossRef citations to date
0
Altmetric
Review

Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures

, , , , , , & show all
Pages 4503-4525 | Published online: 02 Nov 2021

References

  • LestariML, IndrayantoG. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014;39:113–204.24794906
  • AmmonHP, WahlMA. Pharmacology of Curcuma longa. Planta Med. 1991;57(1):1–7. doi:10.1055/s-2006-9600042062949
  • VaughnAR, BranumA, SivamaniRK. Effects of Turmeric (Curcuma longa) on Skin Health: a Systematic Review of the Clinical Evidence. Phytother Res. 2016;30(8):1243–1264. doi:10.1002/ptr.564027213821
  • LimketkaiBN, WolfA, ParianAM. Nutritional interventions in the patient with inflammatory bowel disease. Gastroenterol Clin North Am. 2018;47(1):155–177. doi:10.1016/j.gtc.2017.09.00729413010
  • TabriziR, VakiliS, AkbariM, et al. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019;33(2):253–262. doi:10.1002/ptr.622630402990
  • MedzhitovR. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–776. doi:10.1016/j.cell.2010.03.00620303867
  • MedzhitovR. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435. doi:10.1038/nature0720118650913
  • ZhangJ, ZhengY, LuoY, DuY, ZhangX, FuJ. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/ TLR4/ NF-kappaB pathways in BV2 cells. Mol Immunol. 2019;116:29–37.31590042
  • GaoY, ZhuangZ, LuY, et al. Curcumin Mitigates Neuro-Inflammation by Modulating Microglia Polarization Through Inhibiting TLR4 Axis Signaling Pathway Following Experimental Subarachnoid Hemorrhage. Front Neurosci. 2019;13:1223. doi:10.3389/fnins.2019.0122331803007
  • RahimifardM, MaqboolF, Moeini-NodehS, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–19. doi:10.1016/j.arr.2017.02.00428235660
  • LiQ, SunJ, MohammadtursunN, WuJ, DongJ, LiL. Curcumin inhibits cigarette smoke-induced inflammation via modulating the PPARgamma-NF-kappaB signaling pathway. Food Funct. 2019;10(12):7983–7994. doi:10.1039/C9FO02159K31773117
  • ZhuT, ChenZ, ChenG, et al. Curcumin Attenuates Asthmatic Airway Inflammation and Mucus Hypersecretion Involving a PPARgamma-Dependent NF-kappaB Signaling Pathway In Vivo and In Vitro. Mediators Inflamm. 2019;2019:4927430. doi:10.1155/2019/492743031073274
  • AshrafizadehM, RafieiH, MohammadinejadR, AfsharEG, FarkhondehT, SamarghandianS. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: a review. Phytother Res. 2020;34(8):1745–1760. doi:10.1002/ptr.664232157749
  • KahkhaieKR, MirhosseiniA, AliabadiA, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019;27(5):885–900. doi:10.1007/s10787-019-00607-331140036
  • HasanzadehS, ReadMI, BlandAR, MajeedM, JamialahmadiT, SahebkarA. Curcumin: an inflammasome silencer. Pharmacol Res. 2020;159:104921. doi:10.1016/j.phrs.2020.10492132464325
  • OlcumM, TastanB, ErcanI, EltutanIB, GencS. Inhibitory effects of phytochemicals on NLRP3 inflammasome activation: a review. Phytomedicine. 2020;75:153238. doi:10.1016/j.phymed.2020.15323832507349
  • ChenG, LiuS, PanR, et al. Curcumin Attenuates gp120-Induced Microglial Inflammation by Inhibiting Autophagy via the PI3K Pathway. Cell Mol Neurobiol. 2018;38(8):1465–1477. doi:10.1007/s10571-018-0616-330155758
  • ChowdhuryI, BanerjeeS, DrissA, et al. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-kappaB signaling pathway. J Cell Physiol. 2019;234(5):6298–6312. doi:10.1002/jcp.2736030259980
  • MengZ, YanC, DengQ, GaoDF, NiuXL. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kappaB pathways. Acta Pharmacol Sin. 2013;34(7):901–911. doi:10.1038/aps.2013.2423645013
  • SadeghiA, RostamiradA, SeyyedebrahimiS, MeshkaniR. Curcumin ameliorates palmitate-induced inflammation in skeletal muscle cells by regulating JNK/NF-kB pathway and ROS production. Inflammopharmacology. 2018;26(5):1265–1272. doi:10.1007/s10787-018-0466-029644554
  • ZengZ, ZhanL, LiaoH, ChenL, LvX. Curcumin improves TNBS-induced colitis in rats by inhibiting IL-27 expression via the TLR4/NF-kappaB signaling pathway. Planta Med. 2013;79(2):102–109.23250811
  • FuY, GaoR, CaoY, et al. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol. 2014;20(1):54–58. doi:10.1016/j.intimp.2014.01.02424508537
  • PanahiY, HosseiniMS, KhaliliN, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016;82:578–582. doi:10.1016/j.biopha.2016.05.03727470399
  • AlizadehF, JavadiM, KaramiAA, GholaminejadF, KavianpourM, HaghighianHK. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: a randomized clinical trial. Phytother Res. 2018;32(3):514–521. doi:10.1002/ptr.599829193350
  • AtabakiM, Shariati-SarabiZ, Tavakkol-AfshariJ, MohammadiM. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int Immunopharmacol. 2020;85:106607. doi:10.1016/j.intimp.2020.10660732540725
  • RahimiK, AhmadiA, HassanzadehK, et al. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun Rev. 2019;18(7):738–748. doi:10.1016/j.autrev.2019.05.01231059845
  • Momtazi-BorojeniAA, HaftcheshmehSM, EsmaeiliSA, JohnstonTP, AbdollahiE, SahebkarA. Curcumin: a natural modulator of immune cells in systemic lupus erythematosus. Autoimmun Rev. 2018;17(2):125–135. doi:10.1016/j.autrev.2017.11.01629180127
  • ZhangW, LiuX, ZhuY, et al. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol. 2021. doi:10.1002/eji.202048794
  • ChangY, ZhaiL, PengJ, WuH, BianZ, XiaoH. Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed Pharmacother. 2021;141:111931. doi:10.1016/j.biopha.2021.11193134328111
  • WeiC, WangJY, XiongF, et al. Curcumin ameliorates DSSinduced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol Med Rep. 2021;23(1):254.33537834
  • DerochetteS, FranckT, Mouithys-MickaladA, et al. Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils. Chem Biol Interact. 2013;206(2):186–193. doi:10.1016/j.cbi.2013.09.01124060679
  • LinX, BaiD, WeiZ, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019;14(5):e0216711. doi:10.1371/journal.pone.021671131112588
  • YousefianM, ShakourN, HosseinzadehH, HayesAW, HadizadehF, KarimiG. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine. 2019;55:200–213. doi:10.1016/j.phymed.2018.08.00230668430
  • KaplanGG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–727. doi:10.1038/nrgastro.2015.15026323879
  • GongZ, ZhaoS, ZhouJ, et al. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1beta production. Mol Immunol. 2018;104:11–19. doi:10.1016/j.molimm.2018.09.00430396035
  • BurgeK, GunasekaranA, EckertJ, ChaabanH. Curcumin and intestinal inflammatory diseases: molecular mechanisms of protection. Int J Mol Sci. 2019;20(8). doi:10.3390/ijms20081912
  • WangY, TangQ, DuanP, YangL. Curcumin as a therapeutic agent for blocking NF-kappaB activation in ulcerative colitis. Immunopharmacol Immunotoxicol. 2018;40(6):476–482. doi:10.1080/08923973.2018.146914530111198
  • FallahiF, BorranS, AshrafizadehM, et al. Curcumin and inflammatory bowel diseases: from in vitro studies to clinical trials. Mol Immunol. 2021;130:20–30. doi:10.1016/j.molimm.2020.11.01633348246
  • SadeghiN, MansooriA, ShayestehA, HashemiSJ. The effect of curcumin supplementation on clinical outcomes and inflammatory markers in patients with ulcerative colitis. Phytother Res. 2020;34(5):1123–1133. doi:10.1002/ptr.658131802559
  • SugimotoK, IkeyaK, BambaS, et al. Highly bioavailable curcumin derivative ameliorates Crohn’s disease symptoms: a randomized, double-blind, multicenter study. J Crohns Colitis. 2020;14(12):1693–1701. doi:10.1093/ecco-jcc/jjaa097
  • SamoilaI, DinescuS, CostacheM. Interplay between Cellular and Molecular Mechanisms Underlying Inflammatory Bowel Diseases Development-A Focus on Ulcerative Colitis. Cells. 2020;9(7):1647. doi:10.3390/cells9071647
  • LarabiA, BarnichN, NguyenHTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51. doi:10.1080/15548627.2019.163538431286804
  • ShaoBZ, YaoY, ZhaiJS, ZhuJH, LiJP, WuK. The role of autophagy in inflammatory bowel disease. Front Physiol. 2021;12:621132. doi:10.3389/fphys.2021.62113233633585
  • ZhangL, XueH, ZhaoG, et al. Curcumin and resveratrol suppress dextran sulfate sodiuminduced colitis in mice. Mol Med Rep. 2019;19(4):3053–3060.30816479
  • YueW, LiuY, LiX, LvL, HuangJ, LiuJ. Curcumin ameliorates dextran sulfate sodium-induced colitis in mice via regulation of autophagy and intestinal immunity. Turk J Gastroenterol. 2019;30(3):290–298. doi:10.5152/tjg.2019.1834230923033
  • Cunha NetoF, MartonLT, de MarquiSV, LimaTA, BarbalhoSM. Curcuminoids from Curcuma Longa: new adjuvants for the treatment of crohn’s disease and ulcerative colitis? Crit Rev Food Sci Nutr. 2019;59(13):2136–2143. doi:10.1080/10408398.2018.145640329565637
  • GrammatikopoulouMG, GkiourasK, TheodoridisX, AsteriouE, ForbesA, BogdanosDP. Oral Adjuvant Curcumin Therapy for Attaining Clinical Remission in Ulcerative Colitis: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2018;10(11):1737. doi:10.3390/nu10111737
  • ZhengT, WangX, ChenZ, HeA, ZhengZ, LiuG. Efficacy of adjuvant curcumin therapy in ulcerative colitis: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol. 2020;35(5):722–729. doi:10.1111/jgh.1491131696975
  • CoelhoMR, RomiMD, FerreiraD, ZaltmanC, Soares-MotaM. The use of curcumin as a complementary therapy in ulcerative colitis: a systematic review of randomized controlled clinical trials. Nutrients. 2020;12(8):2296. doi:10.3390/nu12082296
  • KumarS, AhujaV, SankarMJ, KumarA, MossAC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;10:CD008424.23076948
  • NgQX, SohAYS, LokeW, VenkatanarayananN, LimDY, YeoWS. A Meta-Analysis of the Clinical Use of Curcumin for Irritable Bowel Syndrome (IBS). J Clin Med. 2018;7(10):298. doi:10.3390/jcm7100298
  • AltF, ChongPW, TengE, UebelhackR. Evaluation of Benefit and Tolerability of IQP-CL-101 (Xanthofen) in the Symptomatic Improvement of Irritable Bowel Syndrome: a Double-Blinded, Randomised, Placebo-Controlled Clinical Trial. Phytother Res. 2017;31(7):1056–1062. doi:10.1002/ptr.582628508427
  • PortincasaP, BonfrateL, ScribanoML, et al. Curcumin and Fennel Essential Oil Improve Symptoms and Quality of Life in Patients with Irritable Bowel Syndrome. J Gastrointestin Liver Dis. 2016;25(2):151–157. doi:10.15403/jgld.2014.1121.252.ccm27308645
  • BijlsmaJWJ, BerenbaumF, LafeberFPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–2126. doi:10.1016/S0140-6736(11)60243-221684382
  • Glyn-JonesS, PalmerAJR, AgricolaR, et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. doi:10.1016/S0140-6736(14)60802-325748615
  • SeoEJ, EfferthT, PanossianA. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. Phytomedicine. 2018;50:285–299. doi:10.1016/j.phymed.2018.09.20230466988
  • ZhangZ, LeongDJ, XuL, et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther. 2016;18(1):128. doi:10.1186/s13075-016-1025-y27260322
  • KangC, JungE, HyeonH, SeonS, LeeD. Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine. 2020;23:102104. doi:10.1016/j.nano.2019.10210431672600
  • WangQ, YeC, SunS, et al. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int Immunopharmacol. 2019;72:292–300. doi:10.1016/j.intimp.2019.04.02731005039
  • WangJ, WangX, CaoY, HuangT, SongDX, TaoHR. Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and an in vitro evaluation in chondrocytes. Int J Mol Med. 2018;42(5):2604–2614.30106112
  • YanD, HeB, GuoJ, LiS, WangJ. Involvement of TLR4 in the protective effect of intra-articular administration of curcumin on rat experimental osteoarthritis. Acta Cir Bras. 2019;34(6):e201900604. doi:10.1590/s0102-86502019006000000431432995
  • LepetsosP, PapavassiliouKA, PapavassiliouAG. Redox and NF-kappaB signaling in osteoarthritis. Free Radic Biol Med. 2019;132:90–100. doi:10.1016/j.freeradbiomed.2018.09.02530236789
  • ParkS, LeeLR, SeoJH, KangS. Curcumin and tetrahydrocurcumin both prevent osteoarthritis symptoms and decrease the expressions of pro-inflammatory cytokines in estrogen-deficient rats. Genes Nutr. 2016;11:2. doi:10.1186/s12263-016-0520-427482294
  • MollazadehH, CiceroAFG, BlessoCN, PirroM, MajeedM, SahebkarA. Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr. 2019;59(1):89–101. doi:10.1080/10408398.2017.135813928799796
  • PanaroMA, CorradoA, BenameurT, PaoloCF, CiciD, PorroC. The Emerging Role of Curcumin in the Modulation of TLR-4 Signaling Pathway: focus on Neuroprotective and Anti-Rheumatic Properties. Int J Mol Sci. 2020;21(7):2299. doi:10.3390/ijms21072299
  • ZhangN, LiuZ, LuoH, et al. FM0807 decelerates experimental arthritis progression by inhibiting inflammatory responses and joint destruction via modulating NF-kappaB and MAPK pathways. Biosci Rep. 2019;39(9). doi:10.1042/BSR20182263.
  • YanF, LiH, ZhongZ, et al. Co-Delivery of Prednisolone and Curcumin in Human Serum Albumin Nanoparticles for Effective Treatment of Rheumatoid Arthritis. Int J Nanomedicine. 2019;14:9113–9125. doi:10.2147/IJN.S21941331819422
  • MancaML, LattuadaD, ValentiD, et al. Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: the use of fibroblast-like synovial cells cultured in synovial fluid. Eur J Pharm Biopharm. 2019;136:84–92. doi:10.1016/j.ejpb.2019.01.01230659893
  • ChenB, LiH, OuG, RenL, YangX, ZengM. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IkappaBalpha and blocking mitochondrial damage. Arthritis Res Ther. 2019;21(1):193. doi:10.1186/s13075-019-1974-z31455356
  • LiX, XuDQ, SunDY, ZhangT, HeX, XiaoDM. Curcumin ameliorates monosodium urate-induced gouty arthritis through Nod-like receptor 3 inflammasome mediation via inhibiting nuclear factor-kappa B signaling. J Cell Biochem. 2019;120(4):6718–6728. doi:10.1002/jcb.2796930592318
  • SrivastavaS, SaksenaAK, KhattriS, KumarS, DagurRS. Curcuma longa extract reduces inflammatory and oxidative stress biomarkers in osteoarthritis of knee: a four-month, double-blind, randomized, placebo-controlled trial. Inflammopharmacology. 2016;24(6):377–388. doi:10.1007/s10787-016-0289-927761693
  • WangZ, JonesG, WinzenbergT, et al. Effectiveness of curcuma longa extract for the treatment of symptoms and effusion-synovitis of knee osteoarthritis: a randomized trial. Ann Intern Med. 2020;173(11):861–869. doi:10.7326/M20-099032926799
  • Heidari-BeniM, MoravejolahkamiAR, GorgianP, AskariG, TarrahiMJ, Bahreini-EsfahaniN. Herbal formulation “turmeric extract, black pepper, and ginger” versus Naproxen for chronic knee osteoarthritis: a randomized, double-blind, controlled clinical trial. Phytother Res. 2020;34(8):2067–2073. doi:10.1002/ptr.667132180294
  • ChandranB, GoelA. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res. 2012;26(11):1719–1725. doi:10.1002/ptr.463922407780
  • KruegerJG, BrunnerPM. Interleukin-17 alters the biology of many cell types involved in the genesis of psoriasis, systemic inflammation and associated comorbidities. Exp Dermatol. 2018;27(2):115–123. doi:10.1111/exd.1346729152791
  • GlitznerE, KorosecA, BrunnerPM, et al. Specific roles for dendritic cell subsets during initiation and progression of psoriasis. EMBO Mol Med. 2014;6(10):1312–1327. doi:10.15252/emmm.20140411425216727
  • ArmstrongAW, ReadC. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: a Review. JAMA. 2020;323(19):1945–1960. doi:10.1001/jama.2020.400632427307
  • SkyvalidasD, MavropoulosA, TsiogkasS, et al. Curcumin mediates attenuation of pro-inflammatory interferon gamma and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr Res. 2020;75:95–108. doi:10.1016/j.nutres.2020.01.00532114280
  • CampbellNK, FitzgeraldHK, MalaraA, et al. Naturally derived Heme-Oxygenase 1 inducers attenuate inflammatory responses in human dendritic cells and T cells: relevance for psoriasis treatment. Sci Rep. 2018;8(1):10287. doi:10.1038/s41598-018-28488-629980703
  • VarmaSR, SivaprakasamTO, MishraA, PrabhuS. M R, P R. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: its evaluation using curcumin. Eur J Pharmacol. 2017;813:33–41.28736282
  • XiaYP, LiB, HyltonD, DetmarM, YancopoulosGD, RudgeJS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102(1):161–168. doi:10.1182/blood-2002-12-379312649136
  • KangD, LiB, LuoL, et al. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73–80.26826458
  • SunJ, ZhaoY, JinH, HuJ. Curcumin relieves TPA-induced Th1 inflammation in K14-VEGF transgenic mice. Int Immunopharmacol. 2015;25(2):235–241. doi:10.1016/j.intimp.2015.02.00725682767
  • FilipponeA, ConsoliGML, GranataG, et al. Topical Delivery of Curcumin by Choline-Calix[4]arene-Based Nanohydrogel Improves Its Therapeutic Effect on a Psoriasis Mouse Model. Int J Mol Sci. 2020;21(14):5053. doi:10.3390/ijms21145053
  • ZhangY, XiaQ, LiY, et al. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: a New Strategy for Clustering Drug in Inflammatory Skin. Theranostics. 2019;9(1):48–64. doi:10.7150/thno.2971530662553
  • AntigaE, BoncioliniV, VolpiW, Del BiancoE, CaproniM. Oral Curcumin (Meriva) Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris. Biomed Res Int. 2015;2015:283634. doi:10.1155/2015/28363426090395
  • Carrion-GutierrezM, Ramirez-BoscaA, Navarro-LopezV, et al. Effects of Curcuma extract and visible light on adults with plaque psoriasis. Eur J Dermatol. 2015;25(3):240–246. doi:10.1684/ejd.2015.258426066761
  • BiliaAR, BergonziMC, IsacchiB, AntigaE, CaproniM. Curcumin nanoparticles potentiate therapeutic effectiveness of acitrein in moderate-to-severe psoriasis patients and control serum cholesterol levels. J Pharm Pharmacol. 2018;70(7):919–928. doi:10.1111/jphp.1291029600580
  • KurdSK, SmithN, VanVoorheesA, et al. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: a prospective clinical trial. J Am Acad Dermatol. 2008;58(4):625–631. doi:10.1016/j.jaad.2007.12.03518249471
  • MohammadiA, BlessoCN, BarretoGE, BanachM, MajeedM, SahebkarA. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem. 2019;66:1–16. doi:10.1016/j.jnutbio.2018.12.00530660832
  • KarrysA, RadyI, ChamcheuRN, et al. Bioactive Dietary VDR Ligands Regulate Genes Encoding Biomarkers of Skin Repair That Are Associated with Risk for Psoriasis. Nutrients. 2018;10(2):174. doi:10.3390/nu10020174
  • GuptaR, AhnR, LaiK, et al. Landscape of Long Noncoding RNAs in Psoriatic and Healthy Skin. J Invest Dermatol. 2016;136(3):603–609. doi:10.1016/j.jid.2015.12.00927015450
  • MillerAH, MaleticV, RaisonCL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–741. doi:10.1016/j.biopsych.2008.11.02919150053
  • MillerAH, RaisonCL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34. doi:10.1038/nri.2015.526711676
  • RaisonCL, CapuronL, MillerAH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24–31. doi:10.1016/j.it.2005.11.00616316783
  • DowlatiY, HerrmannN, SwardfagerW, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–457. doi:10.1016/j.biopsych.2009.09.03320015486
  • MaesM, SongC, YirmiyaR. Targeting IL-1 in depression. Exp Opinion Therapeutic Targets. 2012;16(11):1097–1112.
  • Kohler-ForsbergO, HjorthojCNL. C, Nordentoft M, Mors O, Benros ME. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials. Acta Psychiatr Scand. 2019;139(5):404–419. doi:10.1111/acps.1301630834514
  • KohlerO, BenrosME, NordentoftM, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry. 2014;71(12):1381–1391. doi:10.1001/jamapsychiatry.2014.161125322082
  • KappelmannN, LewisG, DantzerR, JonesPB, KhandakerGM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335–343. doi:10.1038/mp.2016.16727752078
  • NgQX, KohSSH, ChanHW, HoCYX. Clinical Use of Curcumin in Depression: a Meta-Analysis. J Am Med Dir Assoc. 2017;18(6):503–508.28236605
  • ZhangWY, GuoYJ, HanWX, et al. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. Int Immunopharmacol. 2019;67:138–144. doi:10.1016/j.intimp.2018.12.01230551030
  • VasilevaLV, SarachevaKE, IvanovskaMV, et al. Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food Chem Toxicol. 2018;121:604–611. doi:10.1016/j.fct.2018.09.06530268794
  • FanC, SongQ, WangP, LiY, YangM, YuSY. Neuroprotective Effects of Curcumin on IL-1beta-Induced Neuronal Apoptosis and Depression-Like Behaviors Caused by Chronic Stress in Rats. Front Cell Neurosci. 2018;12:516. doi:10.3389/fncel.2018.0051630666189
  • FanC, SongQ, WangP, et al. Curcumin Protects Against Chronic Stress-induced Dysregulation of Neuroplasticity and Depression-like Behaviors via Suppressing IL-1beta Pathway in Rats. Neuroscience. 2018;392:92–106. doi:10.1016/j.neuroscience.2018.09.02830268781
  • QiXJ, LiuXY, TangLM, LiPF, QiuF, YangAH. Anti-depressant effect of curcumin-loaded guanidine-chitosan thermo-sensitive hydrogel by nasal delivery. Pharm Dev Technol. 2020;25(3):316–325. doi:10.1080/10837450.2019.168652431661648
  • MadihaS, HaiderS. Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test. Metab Brain Dis. 2019;34(1):297–308. doi:10.1007/s11011-018-0352-x30506334
  • KaufmannFN, GazalM, BastosCR, KasterMP, GhisleniG. Curcumin in depressive disorders: an overview of potential mechanisms, preclinical and clinical findings. Eur J Pharmacol. 2016;784:192–198. doi:10.1016/j.ejphar.2016.05.02627235294
  • Abd-RaboMM, GeorgyGS, SaiedNM, HassanWA. Involvement of the serotonergic system and neuroplasticity in the antidepressant effect of curcumin in ovariectomized rats: comparison with oestradiol and fluoxetine. Phytother Res. 2019;33(2):387–396. doi:10.1002/ptr.623230575146
  • Fusar-PoliL, VozzaL, GabbiadiniA, et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020;60(15):2643–2653. doi:10.1080/10408398.2019.165326031423805
  • DomeP, TomborL, LazaryJ, GondaX, RihmerZ. Natural health products, dietary minerals and over-the-counter medications as add-on therapies to antidepressants in the treatment of major depressive disorder: a review. Brain Res Bull. 2019;146:51–78.30599219
  • RamaholimihasoT, BouazzaouiF, KaladjianA. Curcumin in Depression: potential Mechanisms of Action and Current Evidence-A Narrative Review. Front Psychiatry. 2020;11:572533. doi:10.3389/fpsyt.2020.57253333329109
  • KanchanatawanB, TangwongchaiS, SughondhabhiromA, et al. Add-on Treatment with Curcumin Has Antidepressive Effects in Thai Patients with Major Depression: results of a Randomized Double-Blind Placebo-Controlled Study. Neurotox Res. 2018;33(3):621–633. doi:10.1007/s12640-017-9860-429327213
  • AndradeC. A critical examination of studies on curcumin for depression. J Clin Psychiatry. 2014;75(10):e1110–1112. doi:10.4088/JCP.14f0948925373119
  • den DekkerWK, ChengC, PasterkampG, DuckersHJ. Toll like receptor 4 in atherosclerosis and plaque destabilization. Atherosclerosis. 2010;209(2):314–320. doi:10.1016/j.atherosclerosis.2009.09.07519900676
  • Paramel VargheseG, FolkersenL, StrawbridgeRJ, et al. NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. J Am Heart Assoc. 2016;5:5. doi:10.1161/JAHA.115.003031
  • WinkelsH, EhingerE, VassalloM, et al. Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ Res. 2018;122(12):1675–1688. doi:10.1161/CIRCRESAHA.117.31251329545366
  • HanssonGK, RobertsonAK, Soderberg-NauclerC. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297–329. doi:10.1146/annurev.pathol.1.110304.10010018039117
  • BäckM, YurdagulA, TabasI, ÖörniK, KovanenPT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019. doi:10.1038/s41569-019-0169-2
  • GaoS, ZhangW, ZhaoQ, et al. Curcumin ameliorates atherosclerosis in apolipoprotein E deficient asthmatic mice by regulating the balance of Th2/Treg cells. Phytomedicine. 2019;52:129–135. doi:10.1016/j.phymed.2018.09.19430599892
  • Momtazi-BorojeniAA, AbdollahiE, NikfarB, ChaichianS, Ekhlasi-HundrieserM. Curcumin as a potential modulator of M1 and M2 macrophages: new insights in atherosclerosis therapy. Heart Fail Rev. 2019;24(3):399–409. doi:10.1007/s10741-018-09764-z30673930
  • ZhangS, ZouJ, LiP, ZhengX, FengD. Curcumin Protects against Atherosclerosis in Apolipoprotein E-Knockout Mice by Inhibiting Toll-like Receptor 4 Expression. J Agric Food Chem. 2018;66(2):449–456. doi:10.1021/acs.jafc.7b0426029224353
  • van der HeijdenT, KritikouE, VenemaW, et al. NLRP3 Inflammasome Inhibition by MCC950 Reduces Atherosclerotic Lesion Development in Apolipoprotein E-Deficient Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37(8):1457–1461. doi:10.1161/ATVBAHA.117.30957528596375
  • RidkerPM, EverettBM, ThurenT, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119–1131. doi:10.1056/NEJMoa170791428845751
  • HanY, SunHJ, TongY, et al. Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFkappaB-mediated NLRP3 expression in spontaneously hypertensive rats. J Nutr Biochem. 2019;72:108212. doi:10.1016/j.jnutbio.2019.07.00331473513
  • LiX, XiaoH, LinC, et al. Synergistic effects of liposomes encapsulating atorvastatin calcium and curcumin and targeting dysfunctional endothelial cells in reducing atherosclerosis. Int J Nanomedicine. 2019;14:649–665. doi:10.2147/IJN.S18981930697048
  • LinK, ChenH, ChenX, QianJ, HuangS, HuangW. Efficacy of Curcumin on Aortic Atherosclerosis: a Systematic Review and Meta-Analysis in Mouse Studies and Insights into Possible Mechanisms. Oxid Med Cell Longev. 2020;2020:1520747. doi:10.1155/2020/152074731998433
  • Simental-MendiaLE, PirroM, GottoAM, et al. Lipid-modifying activity of curcuminoids: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019;59(7):1178–1187. doi:10.1080/10408398.2017.139620129185808
  • SahebkarA. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin Nutr. 2014;33(3):406–414. doi:10.1016/j.clnu.2013.09.01224139527
  • Worldometer. 2021. Available from: https://wwwworldometersinfo/coronavirus/.Accessed August 12, 2021.
  • GuanWJ, NiZY, HuY, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa200203232109013
  • HuangC, WangY, LiX, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-531986264
  • LiuJ, LiS, LiuJ, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi:10.1016/j.ebiom.2020.10276332361250
  • XiongY, LiuY, CaoL, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–770. doi:10.1080/22221751.2020.174736332228226
  • RattisBAC, RamosSG, CelesMRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol. 2021;12:675287. doi:10.3389/fphar.2021.67528734025433
  • ValizadehH, Abdolmohammadi-VahidS, DanshinaS, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol. 2020;89(Pt B):107088. doi:10.1016/j.intimp.2020.10708833129099
  • TahmasebiS, El-EsawiMA, MahmoudZH, et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol. 2021;236(7):5325–5338. doi:10.1002/jcp.3023333372280
  • TahmasebiS, SaeedBQ, TemirgalievaE, et al. Nanocurcumin improves Treg cell responses in patients with mild and severe SARS-CoV2. Life Sci. 2021;276:119437. doi:10.1016/j.lfs.2021.11943733789145
  • Saber-MoghaddamN, SalariS, HejaziS, et al. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: an open label nonrandomized clinical trial. Phytother Res. 2021;35(5):2616–2623. doi:10.1002/ptr.7004
  • PawarKS, MastudRN, PawarSK, et al. Oral Curcumin With Piperine as Adjuvant Therapy for the Treatment of COVID-19: a Randomized Clinical Trial. Front Pharmacol. 2021;12:669362. doi:10.3389/fphar.2021.66936234122090
  • CuomoJ, AppendinoG, DernAS, et al. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod. 2011;74(4):664–669. doi:10.1021/np100726221413691
  • TsudaT. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018;9(2):705–714. doi:10.1039/C7FO01242J29206254
  • SchneiderC, GordonON, EdwardsRL, LuisPB. Degradation of Curcumin: from Mechanism to Biological Implications. J Agric Food Chem. 2015;63(35):7606–7614. doi:10.1021/acs.jafc.5b0024425817068
  • ChenY, LuY, LeeRJ, XiangG. Nano Encapsulated Curcumin: and Its Potential for Biomedical Applications. Int J Nanomedicine. 2020;15:3099–3120. doi:10.2147/IJN.S21032032431504
  • IparVS, DsouzaA, DevarajanPV. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Eur J Drug Metab Pharmacokinet. 2019;44(4):459–480. doi:10.1007/s13318-019-00545-z30771095
  • MaZ, WangN, HeH, TangX. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release. 2019;316:359–380. doi:10.1016/j.jconrel.2019.10.05331682912
  • StohsSJ, ChenO, RaySD, JiJ, BucciLR, PreussHG. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: a Review. Molecules. 2020;25(6):1397. doi:10.3390/molecules25061397
  • ChainoglouE, Hadjipavlou-LitinaD. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: structural characteristics and molecular targets. Expert Opin Drug Discov. 2019;14(8):821–842. doi:10.1080/17460441.2019.161456031094233
  • SzebeniGJ, NagyLI, BerkoA, et al. The Anti-Inflammatory Role of Mannich Curcuminoids; Special Focus on Colitis. Molecules. 2019;24(8):1546. doi:10.3390/molecules24081546
  • CouryJR, NixonR, CollinsM, SchwartzJ, ChahineNO, GrandeDA. Oral Administration of a Chemically Modified Curcumin, TRB-N0224, Reduced Inflammatory Cytokines and Cartilage Erosion in a Rabbit ACL Transection Injury Model. Cartilage. 2021;12(2):251–262. doi:10.1177/194760351881526330486657
  • QianJ, ChenX, ShuS, et al. Design and synthesis novel di-carbonyl analogs of curcumin (DACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI). Eur J Med Chem. 2019;167:414–425. doi:10.1016/j.ejmech.2019.02.04230780088
  • NoureddinSA, El-ShishtawyRM, Al-FootyKO. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem. 2019;182:111631. doi:10.1016/j.ejmech.2019.11163131479974
  • ChengF, ChenY, ZhanZ, et al. Curc-mPEG454, a PEGylated Curcumin Derivative, Improves Anti-inflammatory and Antioxidant Activities: a Comparative Study. Inflammation. 2018;41(2):579–594. doi:10.1007/s10753-017-0714-229234949
  • WangZS, ChenLZ, ZhouHP, LiuXH, ChenFH. Diarylpentadienone derivatives (curcumin analogues): synthesis and anti-inflammatory activity. Bioorg Med Chem Lett. 2017;27(8):1803–1807. doi:10.1016/j.bmcl.2017.02.05628284806
  • YeL, HuX, HuX, et al. Curcumin analogue C66 attenuates obesity-induced renal injury by inhibiting chronic inflammation. Biomed Pharmacother. 2021;137:111418. doi:10.1016/j.biopha.2021.11141833761621
  • Hadzi-PetrushevN, AngelovskiM, RebokK, MitrokhinV, KamkinA, MladenovM. Antioxidant and anti-inflammatory effects of the monocarbonyl curcumin analogs B2BRBC and C66 in monocrotaline-induced right ventricular hypertrophy. J Biochem Mol Toxicol. 2019;33(8):e22353. doi:10.1002/jbt.2235331407471
  • GuY, ZhuY, DengG, LiuS, SunY, LvW. Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation. Int Immunopharmacol. 2021;93:107375. doi:10.1016/j.intimp.2021.10737533517224
  • WangZ, MuW, LiP, LiuG, YangJ. Anti-inflammatory activity of ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives in vitro and in vivo. Eur J Pharm Sci. 2021;160:105756. doi:10.1016/j.ejps.2021.10575633588045
  • XieZ, ZhangZ, YuS, et al. Synthesis and Evaluation of Anti-inflammatory N-Substituted 3,5-Bis(2-(trifluoromethyl)benzylidene)piperidin-4-ones. ChemMedChem. 2017;12(4):327–336. doi:10.1002/cmdc.20160060628098433
  • PhumsuayR, MuangnoiC, Dasuni WasanaPW, et al. Molecular Insight into the Anti-Inflammatory Effects of the Curcumin Ester Prodrug Curcumin Diglutaric Acid In Vitro and In Vivo. Int J Mol Sci. 2020;21(16):5700. doi:10.3390/ijms21165700
  • MuangnoiC, JithavechP, Ratnatilaka Na BhuketP. Ratnatilaka Na Bhuket P, et al. A curcumin-diglutaric acid conjugated prodrug with improved water solubility and antinociceptive properties compared to curcumin. Biosci Biotechnol Biochem. 2018;82(8):1301–1308. doi:10.1080/09168451.2018.146269429678124
  • MuangnoiC, Ratnatilaka Na BhuketP, JithavechP, et al. Scale-Up Synthesis and In Vivo Anti-Tumor Activity of Curcumin Diethyl Disuccinate, an Ester Prodrug of Curcumin, in HepG2-Xenograft Mice. Pharmaceutics. 2019;11(8):373. doi:10.3390/pharmaceutics11080373
  • MuangnoiC, SharifU. Ratnatilaka Na Bhuket P, Rojsitthisak P, Paraoan L. Protective Effects of Curcumin Ester Prodrug, Curcumin Diethyl Disuccinate against H2O2-Induced Oxidative Stress in Human Retinal Pigment Epithelial Cells: potential Therapeutic Avenues for Age-Related Macular Degeneration. Int J Mol Sci. 2019;20(13):548.
  • LimcharoenT, MuangnoiC, Dasuni WasanaPW, et al. Improved antiallodynic, antihyperalgesic and anti-inflammatory response achieved through potential prodrug of curcumin, curcumin diethyl diglutarate in a mouse model of neuropathic pain. Eur J Pharmacol. 2021;899:174008. doi:10.1016/j.ejphar.2021.17400833705800
  • SorasitthiyanukarnFN. Ratnatilaka Na Bhuket P, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising carrier of novel curcumin diethyl diglutarate. Int J Biol Macromol. 2019;131:1125–1136. doi:10.1016/j.ijbiomac.2019.03.12030902713
  • SasakiH, SunagawaY, TakahashiK. Innovative Preparation of Curcumin for Improved Oral Bioavailability. Biol Pharm Bull. 2011;34(5):660–665. doi:10.1248/bpb.34.66021532153
  • AdachiS, HamoyaT, FujiiG, et al. Theracurmin inhibits intestinal polyp development in Apc-mutant mice by inhibiting inflammation-related factors. Cancer Sci. 2020;111(4):1367–1374. doi:10.1111/cas.1432931991021
  • SmallGW, SiddarthP, LiZ, et al. Memory and Brain Amyloid and Tau Effects of a Bioavailable Form of Curcumin in Non-Demented Adults: a Double-Blind, Placebo-Controlled 18-Month Trial. Am J Geriatr Psychiatry. 2018;26(3):266–277. doi:10.1016/j.jagp.2017.10.01029246725
  • NakagawaY, MukaiS, YamadaS, et al. The Efficacy and Safety of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: a 6-Month Open-Labeled Prospective Study. Clin Med Insights Arthritis Musculoskelet Disord. 2020;13:1179544120948471. doi:10.1177/117954412094847132848491
  • ThomasJV, SminaTP, KhannaA, et al. Influence of a low-dose supplementation of curcumagalactomannoside complex (CurQfen) in knee osteoarthritis: a randomized, open-labeled, active-controlled clinical trial. Phytother Res. 2021;35(3):1443–1455. doi:10.1002/ptr.690733210408
  • SheethalS, RatheeshM, JoseSP, et al. Anti-Ulcerative Effect of Curcumin-Galactomannoside Complex on Acetic Acid-Induced Experimental Model by Inhibiting Inflammation and Oxidative Stress. Inflammation. 2020;43(4):1411–1422. doi:10.1007/s10753-020-01218-932240451
  • BelcaroG, CesaroneMR, DugallM. Product-evaluation registry of Meriva®, a curcumin-phosphatidylcholine complex, for the complementary management of osteoarthritis. Panminerva Med. 2010;52(2):55–62.20657536
  • BelcaroG, DugallM, LuzziR. Meriva® +Glucosamine versus Condroitin+Glucosamine in patients with knee osteoarthritis: an observational study. Eur Rev Med Pharmacol Sci. 2014;18:3859–3963.
  • YabasM, OrhanC, ErB, et al. A Next Generation Formulation of Curcumin Ameliorates Experimentally Induced Osteoarthritis in Rats via Regulation of Inflammatory Mediators. Front Immunol. 2021;12:609629. doi:10.3389/fimmu.2021.60962933776996
  • Moballegh NaseryM, AbadiB, PoormoghadamD, et al. Curcumin Delivery Mediated by Bio-Based Nanoparticles: a Review. Molecules. 2020;25(3):689. doi:10.3390/molecules25030689
  • HuangY, CanupBSB, GouS, et al. Oral nanotherapeutics with enhanced mucus penetration and ROS-responsive drug release capacities for delivery of curcumin to colitis tissues. J Mater Chem B. 2021;9(6):1604–1615. doi:10.1039/D0TB02092C33471012
  • Pontes-QueroGM, Benito-GarzonL, Perez CanoJ, AguilarMR, Vazquez-LasaB. Amphiphilic polymeric nanoparticles encapsulating curcumin: antioxidant, anti-inflammatory and biocompatibility studies. Mater Sci Eng C Mater Biol Appl. 2021;121:111793. doi:10.1016/j.msec.2020.11179333579443
  • Aguilera-GarridoA, Del Castillo-SantaellaT, Galisteo-GonzalezF, Jose Galvez-RuizM, Maldonado-ValderramaJ. Investigating the role of hyaluronic acid in improving curcumin bioaccessibility from nanoemulsions. Food Chem. 2021;351:129301. doi:10.1016/j.foodchem.2021.12930133639433
  • ZhangS, KangL, HuS, et al. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int J Biol Macromol. 2021;167:1598–1612. doi:10.1016/j.ijbiomac.2020.11.11733220374
  • ZainuddinN, AhmadI, ZulfakarMH, KargarzadehH, RamliS. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin. Carbohydr Polym. 2021;254:117401. doi:10.1016/j.carbpol.2020.11740133357890
  • Hosseini-ZareMS, SarhadiM, ZareiM, ThilagavathiR, SelvamC. Synergistic effects of curcumin and its analogs with other bioactive compounds: a comprehensive review. Eur J Med Chem. 2021;210:113072. doi:10.1016/j.ejmech.2020.11307233310285
  • EfferthT, OeschF. Anti-inflammatory and anti-cancer activities of frankincense: targets, treatments and toxicities. Semin Cancer Biol. 2020. doi:10.1016/j.semcancer.2020.01.015
  • HaroyanA, MukuchyanV, MkrtchyanN, et al. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: a comparative, randomized, double-blind, placebo-controlled study. BMC Complement Altern Med. 2018;18(1):7. doi:10.1186/s12906-017-2062-z29316908
  • KarlapudiV, Prasad MungaraAVV, SenguptaK, DavisBA, RaychaudhuriSP, Placebo-Controlled Double-BlindA. Study Demonstrates the Clinical Efficacy of a Novel Herbal Formulation for Relieving Joint Discomfort in Human Subjects with Osteoarthritis of Knee. J Med Food. 2018;21(5):511–520. doi:10.1089/jmf.2017.006529708818