547
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Simultaneous Determination of Loratadine and Its Metabolite Desloratadine in Beagle Plasma by LC-MS/MS and Application for Pharmacokinetics Study of Loratadine Tablets and Omeprazole‑Induced Drug–Drug Interaction

, , , , , , & show all
Pages 5109-5122 | Published online: 22 Dec 2021

References

  • BrozekJL, BousquetJ, AgacheI, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–958. doi:10.1016/j.jaci.2017.03.05028602936
  • KapooraY, KumarK. Structural and clinical impact of anti-allergy agents: an overview. Bioorg Chem. 2020;94:103351. doi:10.1016/j.bioorg.2019.10335131668464
  • HariaM, FittonA, PetersDH. Loratadine. A reappraisal of its pharmacological properties and therapeutic use in allergic disorders. Drugs. 1994;48(4):617–637. doi:10.2165/00003495-199448040-000097528133
  • LawrenceM, Du BuskeMD. Clinical comparison of histamine H1-receptor antagonist drugs. J Allergy Clin Immunol. 1996;98:S307–318. doi:10.1016/S0091-6749(96)80116-38977542
  • PhilpotEE. Safety of second generation antihistamines. Allergy Asthma Proc. 2000;21(1):15–20. doi:10.2500/10885410077824903310748947
  • RamanathanR, ReydermanL, KulmatyckiK, et al. Disposition of loratadine in healthy volunteers. Xenobiotica. 2007;37(7):753–769. doi:10.1080/0049825070146331717620221
  • HilbertJ, RadwanskiE, WegleinR, et al. Pharmacokinetics and dose proportionality of loratadine. J Clin Pharmacol. 1987;27(9):694–698. doi:10.1002/j.1552-4604.1987.tb03090.x2960701
  • SharmaA, HamelinBA. Classic histamine H1 receptor antagonists: a critical review of their metabolic and pharmacokinetic fate from a bird’s eye view. Curr Drug Metab. 2003;4(2):105–129. doi:10.2174/138920003348952312678691
  • RamanathanR, AlvarezN, SuAD, et al. Metabolism and excretion of loratadine in male and female mice, rats and monkeys. Xenobiotica. 2005;35(2):155–189. doi:10.1080/0049825050003890616019945
  • Aratyn-SchausY, RamanathanR. Advances in high-resolution MS and hepatocyte models solve a long-standing metabolism challenge: the loratadine story. Bioanalysis. 2016;8(16):1645–1662. doi:10.4155/bio-2016-009427460981
  • KleinetebbeJ, JostiesC, FrankG, et al. Inhibition of IgE- and non-IgE-mediated histamine release from human basophil leukocytes in vitro by a histamine H1-antagonist, desethoxycarbonyl-loratadine. J Allergy Clin Immunol. 1994;93(2):494–500. doi:10.1016/0091-6749(94)90359-X7509820
  • MurdochD, GoaKL, KeamSJ. Desloratadine-an update of its efficacy in the management of allergic disorders. Adis Drug Evaluation. 2003;63(19):2051–2077. doi:10.2165/00003495-200363190-00010
  • FuraA, ShuYZ, ZhuMS, et al. Discovering drugs through biological transformation: role of pharmacologically active metabolites in drug discovery. J Med Chem. 2004;47(18):4339–4351. doi:10.1021/jm040066v15317447
  • Product-specific guidances for generic drug development; 2008. Available from: https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm. Accessed November 19, 2021.
  • KhanMZ, RauslD, ZanoskiR, et al. Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro-in vivo correlation. Biol Pharm Bull. 2004;27(1635):1630–1635. doi:10.1248/bpb.27.163015467209
  • PopoviG, CakarM, AgbabaD. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media. J Pharmaceut Biomed. 2009;49(1):42–47. doi:10.1016/j.jpba.2008.09.043
  • DavitBM, NwakamaPE, BuehlerGJ, et al. Comparing generic and innovator drugs: a review of 12 years of bioequivalence data from the United States Food and Drug Administration. Ann Pharmacother. 2009;43(10):1583–1597. doi:10.1345/aph.1M14119776300
  • Alfonso-CristanchoR, AndiaT, BarbosaT, et al. Definition and classification of generic drugs across the world. Appl Health Econ Health Policy. 2015;13(Suppl 1):S5–S11. doi:10.1007/s40258-014-0146-126091708
  • MichealF, SayanaM, MotialBM. Current regulatory standpoint on evaluating the bioequivalence of different classes of generic drugs - Is the evaluation in the right direction? Curr Drug Metab. 2019;20(10):835–844. doi:10.2174/138920022066619100715254231589117
  • YangY, MaliepaardM. Interchangeability of Generics-experiences and outlook toward pharmacokinetics variability and generic-generic substitution. Clin Pharmacol Ther. 2018;105(2):292–294. doi:10.1002/cpt.125030460681
  • FrankKJ, LocherK, ZecevicDE, et al. In vivo predictive mini-scale dissolution for weak bases: advantages of pH-shift in combination with an absorptive compartment. Eur J Pharm Sci. 2014;61:32–39. doi:10.1016/j.ejps.2013.12.01524413061
  • ChungJ, KesisoglouF. Physiologically based oral absorption modelling to study gut-level drug interactions. J Pharm Sci. 2018;107(1):18–23. doi:10.1016/j.xphs.2017.08.01528847476
  • Van Den AbeeleJ, KostantiniC, BarkerR, et al. The effect of reduced gastric acid secretion on the gastrointestinal disposition of a ritonavir amorphous solid dispersion in fasted healthy volunteers: an in vivo - in vitro investigation. Eur J Pharm Sci. 2020;151:105377. doi:10.1016/j.ejps.2020.10537732461076
  • [Docket No. FDAe2018eNe1820], framework for assessing pH dependent drug-drug interactions. U.S. Food and Drug Administration. Available from: https://www.gpo.gov/fdsys/pkg/FR-2018-05-22/pdf/2018-10927.pdf. Accessed July 27, 2018.
  • RichardsonP, HawkeyCJ, StackWA. Proton pump inhibitors. Pharmacology and rationale for use in gastrointestinal disorders. Drugs. 1998;56:307–335. doi:10.2165/00003495-199856030-000029777309
  • BlumeH, DonathF, WarnkeA, et al. Pharmacokinetic drug interaction profiles of proton pump inhibitors. J Drug Safety. 2006;29(9):769–784. doi:10.2165/00002018-200629090-00002
  • LiW, ZengS, YuL, et al. Pharmacokinetic drug interaction profile of omeprazole with adverse consequences and clinical risk management. Ther Clin Risk Manag. 2013;9:259–271. doi:10.2147/TCRM.S4315123745048
  • SoonsPA, BergGVD, DanhofM, et al. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol. 1992;42(3):319–324. doi:10.1007/BF002663551577051
  • GersonLB, TriadafilopoulosG. Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol. 2001;13(5):611–616. doi:10.1097/00042737-200105000-0002511396546
  • JohnsonR, ChristensenJ, LinCC. Sensitive gas-liquid chromatographic method for the determination of loratadine and its major active metabolite, descarboethoxyloratadine, in human plasma using a nitrogen-phosphorus detector. J Chromatogr B. 1994;657(1):125–131. doi:10.1016/0378-4347(94)80078-2
  • ZhongD, BlumeH. HPLC-determination of loratadine and its active metabolite descarboethoxyloratadine in human plasma. Die Pharmazie. 1994;49(10):736–739.7816900
  • YinOQP, ShiX, ChowMSS. Reliable and specific high-performance liquid chromatographic method for simultaneous determination of loratadine and its metabolite in human plasma. J Chromatogr B. 2003;796(1):165–172. doi:10.1016/j.jchromb.2003.08.023
  • SoraDI, UdrescuS, DavidV, et al. Validated ion pair liquid chromatography/fluorescence detection method for assessing the variability of the loratadine metabolism occurring in bioequivalence studies. Biomed Chromatogr. 2007;21(10):1023–1029. doi:10.1002/bmc.84517497754
  • PatelBN, SharmaN, SanyalM, et al. LC-MS-ESI for the determination of loratadine and descarboethoxyloratadine in human plasma. J Chromatogr Sci. 2010;48(1):35–44. doi:10.1093/chromsci/48.1.3520056034
  • SutherlandFCW, de JagerAD, BadenhorstD, et al. Sensitive liquid chromatography-tandem mass spectrometry method for the determination of loratadine and its major active metabolite descarboethoxyloratadine in human plasma. J Chromatogr A. 2001;914(1):37–43. doi:10.1016/S0021-9673(01)00646-X11358228
  • WengND, AddisonT, SchneiderT, et al. A sensitive LC/MS/MS method using silica column and aqueous-organic mobile phase for the analysis of loratadine and descarboethoxy-loratadine in human plasma. J Pharmaceut Biomed. 2003;32(4):609–617. doi:10.1016/S0731-7085(03)00168-7
  • ZhangYX, LuYH, WangLJ, et al. Pharmacokinetics and tissue distribution of loratadine, desloratadine and their active metabolites in rat based on a newly developed LC-MS/MS analytical method. Drug Res. 2020;70(10):528–540. doi:10.1055/a-1233-5575
  • Food and Drug Administration Center for Drug Evaluation and Research, Bioanalytical method validation guidance for industry; 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanaly-tical-method-validation-guidance-industry. accessed 24 May 2018.
  • LiuL, QiM, WangP, et al. High-performance liquid chromatographic method for the bioequivalence evaluation of desloratadine fumarate tablets in dogs. J Pharmaceut Biomed. 2004;34:1013–1019. doi:10.1016/j.jpba.2003.11.002
  • PatelBN, SharmaN, SanyalM, et al. LC-MS-ESI for the determination of loratadine and descarboethoxyloratadine in human plasma. J Chromatogr Sci. 2010:48. doi:10.1093/chromsci/48.1.35
  • XuHR, LiXN, ChenWL, et al. Simultaneous determination of desloratadine and its active metabolite 3-hydroxydesloratadine in human plasma by LC/MS/MS and its application to pharmacokinetics and bioequivalence. J Pharm Biomed Anal. 2007;45:659–666. doi:10.1016/j.jpba.2007.07.01217936534
  • YamadaI, GodaT, KawataM, et al. Application of gastric acidity-controlled beagle dog to bioavailability study of cinnarizine. Yakugaku Zasshi. 1990;110(4):280–285. doi:10.1248/yakushi1947.110.4_2802376821