198
Views
4
CrossRef citations to date
0
Altmetric
Original Research

An Industrial Procedure for Pharmacodynamic Improvement of Metformin HCl via Granulation with Its Paracellular Pathway Enhancer Using Factorial Experimental Design

, ORCID Icon &
Pages 4469-4487 | Published online: 02 Nov 2021

References

  • SharmaS, PrasadB. Prediction of negative food‐effect on drug bioavailability by mechanistic biopharmaceutics classification System (mBCS)‐guided physiologically‐based pharmacokinetic modeling. FASEB J. 2020;34(S1):1. doi:10.1096/fasebj.2020.34.s1.05705
  • ChoYD, ParkYJ. In vitro and in vivo evaluation of a self-microemulsifying drug delivery system for the poorly soluble drug fenofibrate. Arch Pharm Res. 2013;37(2):193–203. doi:10.1007/s12272-013-0169-423754165
  • YanB, MaY, GuoJ, WangY. Self-microemulsifying delivery system for improving bioavailability of water insoluble drugs. J Nanopart Res. 2020;22(1):1–4. doi:10.1007/s11051-019-4744-6
  • GulsunT, AkdagY, IzatN, CetinM, OnerL, SahinS. Development and characterization of metformin hydrochloride- and glyburide-containing orally disintegrating tablets. Pharm Dev Technol. 2020;25(8):999–1009. doi:10.1080/10837450.2020.177229032431206
  • SinghAK, ChaurasiyaA, AwasthiA, et al. Oral bioavailability enhancement of exemestane from Self-Microemulsifying Drug Delivery System (SMEDDS). AAPS PharmSciTech. 2009;10(3):906–916. doi:10.1208/s12249-009-9281-719609837
  • ChengC. Biowaiver extension potential to BCS class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22(4):297–304. doi:10.1016/s0928-0987(04)00095-815196586
  • WakerlyMG, PoutonCW, MeakinBJ, MortonFS. The effect of surfactant HLB on the self-emulsifying efficiency of non-ionic surfactant-vegetable oil mixtures. J Pharm Pharmacol. 1986;38(S12):2P. doi:10.1111/j.2042-7158.1986.tb14231.x
  • PoutonCW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. Eur J Pharm Sci. 2000;11:S93–S98. doi:10.1016/s0928-0987(00)00167-611033431
  • BenitaS, LambertG, GarrigueJ-S. Self-emulsifying oral lipid-based formulations for improved delivery of lipophilic drugs. Microencapsulation. 2005;2:429–480. doi:10.1201/9781420027990.pt3
  • CraigDQM, LievensHSR, PittKG, StoreyDE. An investigation into the physico-chemical properties of self-emulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. Int J Pharm. 1993;96(1–3):147–155. doi:10.1016/0378-5173(93)90222-2
  • BarotB, ParejiyaP, PatelT, ParikhR, GohelM. Development of directly compressible metformin hydrochloride by the spray-drying technique. Acta Pharm. 2010;60(2):165–175. doi:10.2478/v10007-010-0016-921134853
  • TakasakiH, YonemochiE, ItoM, WadaK, TeradaK. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG). Results Pharma Sci. 2015;5:1–7. doi:10.1016/j.rinphs.2015.09.00126779418
  • BlockLC, SchmelingLO, CoutoAG, et al. Effect of binders on 500mg metformin hydrochloride tablets produced by wet granulation. Rev Cienc Farm Basica Apl. 2009;30(2):17–24.
  • KelleherJF, MadiAM, GilvaryGC, et al. Metformin hydrochloride and sitagliptin phosphate fixed-dose combination product prepared using melt granulation continuous processing technology. AAPS PharmSciTech. 2019;21(1):1–4. doi:10.1208/s12249-019-1553-231712905
  • VaingankarP, AminP. Continuous melt granulation to develop high drug loaded sustained release tablet of metformin HCl. Asian J Pharm Sci. 2017;12(1):37–50. doi:10.1016/j.ajps.2016.08.00532104312
  • WadherKJ, KakdeRB, UmekarMJ. Formulations of sustained release metformin hydrochloride tablet using combination of lipophilic waxes by melt granulation technique. Afr J Pharm Pharmacol. 2010;4(8):555–561.
  • KimS-H, HwangK-M, ChoC-H, et al. Application of continuous twin screw granulation for the metformin hydrochloride extended release formulation. Int J Pharm. 2017;529(1–2):410–422. doi:10.1016/j.ijpharm.2017.07.01928705620
  • AodahAH, FayedMH, AlalaiweA, AlsulaysBB, AldawsariMF, KhafagyES. Design, optimization, and correlation of in vitro/in vivo disintegration of novel fast orally disintegrating tablet of high dose metformin hydrochloride using moisture activated dry granulation process and quality by design approach. Pharmaceutics. 2020;12(7):598. doi:10.3390/pharmaceutics12070598
  • TedstoneA. Food Standards Agency. Nutr Food Sci. 2010;40(3). doi:10.1108/nfs.2010.01740cab.004
  • Vang Spars IIF, KrogN. Food emulsifiers. Food Sci Technol. 2003. doi:10.1201/9780203913222.ch2
  • HendyRJ, ButterworthKR, GauntIF, KissIS, GrassoP. Long-term toxicity study of sorbitan monostearate (Span 60) in mice. Food Cosmet Toxicol. 1978;16(6):527–534. doi:10.1016/s0015-6264(78)80219-3730079
  • KatanMB, GrundySM, JonesP, LawM, MiettinenT, PaolettiR. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc. 2003;78(8):965–978. doi:10.1016/s0025-6196(11)63144-312911045
  • PardakhtyA. Non-ionic surfactant vesicles (Niosomes) as new drug delivery systems. Pharm Sci. 2017;154–184. doi:10.4018/978-1-5225-1762-7.ch007
  • MadyO. Span 60 as a microsphere matrix: preparation and in vitro characterization of novel Ibuprofen-Span 60 microspheres. J Surfactants Deterg. 2016;20(1):219–232. doi:10.1007/s11743-016-1907-7
  • ItoA, KleinebuddeP. Influence of granulation temperature on particle size distribution of granules in twin-screw granulation (TSG). Pharm Dev Technol. 2019;24(7):874–882. doi:10.1080/10837450.2019.161508931169439
  • MadyOY, DoniaAA, Al-ShoubkiAA, QasimW. Paracellular pathway enhancement of metformin hydrochloride via molecular dispersion in span 60 microparticles. Front Pharmacol. 2019;10. doi:10.3389/fphar.2019.0071330733675
  • YueX, CuiY, YuanT, et al. Calcitriol tablets with hybrid lipid-based solid dispersions with enhanced stability and content uniformity. Pharm Dev Technol. 2020;25(7):899–907. doi:10.1080/10837450.2020.176029732324081
  • SakerA, Cares-PachecoM-G, MarchalP, FalkV. Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio? Powder Technol. 2019;354:52–63. doi:10.1016/j.powtec.2019.05.032
  • BeheraBC, SahooSK, DhalS, BarikBB, GuptaBK. Characterization of glipizide-loaded polymethacrylate microspheres prepared by an emulsion solvent evaporation method. Trop J Pharm Res. 2008;7(1):879–885. doi:10.4314/tjpr.v7i1.14672
  • MaoS, ShiY, LiL, XuJ, SchaperA, KisselT. Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Eur J Pharm Biopharm. 2008;68(2):214–223. doi:10.1016/j.ejpb.2007.06.00817651954
  • OhTO, KimJY, HaJM, et al. Preparation of highly porous gastroretentive metformin tablets using a sublimation method. Eur J Pharm Biopharm. 2013;83(3):460–467. doi:10.1016/j.ejpb.2012.11.00923246798
  • BretnallAE, ClarkeGS. Metformin hydrochloride. In: Analytical Profiles of Drug Substances and Excipients; 1998:243–293. doi:10.1016/s0099-5428(08)60757-1
  • El-GizawySA, El-MaghrabyGM, HedayaAA. Formulation of Acyclovir-loaded solid lipid nanoparticles: design, optimization, and in-vitro characterization. Pharm Dev Technol. 2019;24(10):1287–1298. doi:10.1080/10837450.2019.166738531507232
  • ZancanellaP, OliveiraDML, De oliveiraBH, et al. Mitotane liposomes for potential treatment of adrenal cortical carcinoma: ex vivo intestinal permeation and in vivo bioavailability. Pharm Dev Technol. 2020;25(8):949–961. doi:10.1080/10837450.2020.176264532343624
  • SmithPL. Methods for evaluating intestinal permeability and metabolism in vitro. In: Models for Assessing Drug Absorption and Metabolism; 1996:13–34. doi:10.1007/978-1-4899-1863-5_2
  • JhaSK, KarkiR, PuttegowdaVD, HarinarayanaD. In vitro intestinal permeability studies and pharmacokinetic evaluation of famotidine microemulsion for oral delivery. Int Sch Res Notices. 2014;2014:1–7. doi:10.1155/2014/452051
  • Percie du SertN, AhluwaliaA, AlamS, et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411. doi:10.1371/journal.pbio.300041132663221
  • AlmoazenH. Chapter 4: dosage forms and drug delivery systems. In: The APhA Complete Review for Pharmacy. 12th ed; 2017. doi:10.21019/9781582122816.ch4
  • PageDA, CarlsonGP. Method for studying the permeability of the rat intestinal tract to carbon tetrachloride. Toxicol Methods. 1991;1(3):188–198. doi:10.3109/15376519109044569
  • FriedrichM. Membrane transport in biology. In: Herausgegeben vonGG, TostesonDC, UssingHH, editors. Vol. 3. Transport Across Multi-Membrane Systems. XVIII und 459 Seiten. 97 Abb., 26 Tab. Berlin, Heidelberg, New York: Springer-Verlag; 1980:202. Vol. 24, No. 2. 1978. Preis: 148,— DM; 81,40 $. Food / Nahrung. doi: 10.1002/food.19800240214
  • HemalathaS, WahiA, SinghP, ChansouriaJP. Hypoglycemic activity of Withania coagulans Dunal in streptozotocin induced diabetic rats. J Ethnopharmacol. 2004;93(2–3):261–264. doi:10.1016/j.jep.2004.03.04315234762
  • ShanmugamS. Granulation techniques and technologies: recent progresses. BioImpacts. 2017;5(1):55–63. doi:10.15171/bi.2015.04
  • HamdanI, FarahD, Abu-DahabRA-D. Chromatographic behaviour and analytical method development for metformin HCl: application to permeation studies through Caco-2 cells. Acta Pol Pharm. 2020;77(1):11–21. doi:10.32383/appdr/112237
  • Plata-VargasE, De la Cruz-hernándezC, Dorazco-GonzálezA, Fuentes-NoriegaI, Morales-MoralesD, Germán-AcacioJM. Synthesis of metforminium succinate by melting. crystal structure, thermal, spectroscopic and dissolution properties. J Mex Chem Soc. 2017;61(3). doi:10.29356/jmcs.v61i3.345
  • RamukuttyS, JeyasudhaR, RamachandranE. Mechanical and thermal studies of metronidazole crystals. Indian J Phys. 2013;87(10):1001–1004. doi:10.1007/s12648-013-0337-x
  • MateerSW, CardonaJ, MarksE, GogginBJ, HuaS, KeelyS. Ex vivo intestinal sacs to assess mucosal permeability in models of gastrointestinal disease. J Vis Exp. 2016;(108). doi:10.3791/53250
  • SubramanianN, SharavananSP, ChandrasekarP, BalakumarA, MoulikSP. Lacidipine self-nanoemulsifying drug delivery system for the enhancement of oral bioavailability. Arch Pharm Res. 2015;39(4):481–491. doi:10.1007/s12272-015-0657-926362165
  • DeliMA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta. 2009;1788(4):892–910. doi:10.1016/j.bbamem.2008.09.01618983815
  • DimitrijevicD, ShawAJ, FlorenceAT. Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells. J Pharm Pharmacol. 2000;52(2):157–162. doi:10.1211/002235700177380510714945
  • ProctorWR III. A novel mechanism for intestinal absorption of the type II diabetes drug metformin: role of cation-selective apical transporters in paracellular absorption; 2010.
  • ScheenAJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30(5):359–371. doi:10.2165/00003088-199630050-000038743335
  • MetzlerCM. Pharmaceutical statistics: practical and clinical applications. Second edition. By Sanford Bolton. Marcel Dekker: new York. 1990. xvii + 646pp. 16 × 23cm. ISBN 0-8247-8267-4, $ 99.75. J Pharm Sci. 1991;80(6):614. doi:10.1002/jps.2600800624
  • Al-DossaryBN. In-vitro and in-vivo availability of mebeverine hydrochloride suppositories. Sci Pharm. 2006;74(1):31–51. doi:10.3797/scipharm.2006.74.31
  • UppoorVRS. Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J Control Release. 2001;72(1–3):127–132. doi:10.1016/s0168-3659(01)00268-111389991