208
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Identification of Active Compounds and Mechanism of Huangtu Decoction for the Treatment of Ulcerative Colitis by Network Pharmacology Combined with Experimental Verification

ORCID Icon, , , , , & ORCID Icon show all
Pages 4125-4140 | Published online: 29 Sep 2021

References

  • DuL, HaC. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol Clin North Am. 2020;49(4):643–654. doi:10.1016/j.gtc.2020.07.00533121686
  • da SilvaBC, LyraAC, RochaR, et al. Epidemiology, demographic characteristics and prognostic predictors of ulcerative colitis. World J Gastroenterol. 2014;20(28):9458–9467. doi:10.3748/wjg.v20.i28.945825071340
  • CohenRD, YuAP, WuEQ, et al. Systematic review: the costs of ulcerative colitis in Western countries. Aliment Pharmacol Ther. 2010;31(7):693–707. doi:10.1111/j.1365-2036.2010.04234.x20064142
  • ChenR, LaiLA, BrentnallTA, et al. Biomarkers for colitis-associated colorectal cancer. World J Gastroenterol. 2016;22(35):7882–7891. doi:10.3748/wjg.v22.i35.788227672285
  • NehmeF, SchneiderA, HamidF. Appendiceal adenocarcinoma associated with ulcerative colitis. ACG Case Rep J. 2019;6(11):e00255. doi:10.14309/crj.000000000000025532309470
  • OrdásI, EckmannL, TalaminiM, et al. Ulcerative colitis. Lancet. 2012;380(9853):1606–1619. doi:10.1016/s0140-6736(12)60150-022914296
  • WehkampJ, StangeEF. Recent advances and emerging therapies in the non-surgical management of ulcerative colitis. F1000 Res. 2018;7:1207. doi:10.12688/f1000research.15159.1
  • ZhangY, LongY, YuS, et al. Natural volatile oils derived from herbal medicines: a promising therapy way for treating depressive disorder. Pharmacol Res. 2021;164:105376. doi:10.1016/j.phrs.2020.10537633316383
  • XuQ, GuoQ, WangC, et al. Network differentiation: a computational method of pathogenesis diagnosis in traditional Chinese medicine based on systems science. Artif Intell Med. 2021;118:102134. doi:10.1016/j.artmed.2021.10213434412850
  • ShaoMJ, YanYX, QiQ, TangW, ZuoJP. Application of active components from traditional Chinese medicine in treatment of inflammatory bowel disease. Zhongguo Zhong Yao Za Zhi. 2019. 44(3):415–421. doi:10.19540/j.cnki.cjcmm.20180907.001. Chinese. PMID: 30989902.30989902
  • LiuF, LiuY, TianC. Effect of Rhizoma Atractylodis extract in protecting gastric mucosa and modulating gastrointestinal immune function in a rat model of spleen deficiency. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(3):343–7, 354. Chinese. PMID: 25818777.25818777
  • TangXD, LuB, LiZH, et al. Therapeutic effect of Chang’an I recipe (I) on irritable bowel syndrome with diarrhea: a multicenter randomized Double-Blind placebo-controlled clinical trial. Chin J Integr Med. 2018;24(9):645–652. doi:10.1007/s11655-016-2596-927487786
  • ZhangQ, DuanH, LiR, et al. Inducing apoptosis and suppressing inflammatory reactions in synovial fibroblasts are two important ways for Guizhi-Shaoyao-Zhimu decoction against rheumatoid arthritis. J Inflamm Res. 2021;14:217–236. doi:10.2147/JIR.S28724233542641
  • ManfrediM, BrandiJ, Di CarloC, et al. Mining cancer biology through bioinformatic analysis of proteomic data. Expert Rev Proteomics. 2019;16(9):733–747. doi:10.1080/14789450.2019.165486231398064
  • TangS, JingH, HuangZ, et al. Identification of key candidate genes in neuropathic pain by integrated bioinformatic analysis. J Cell Biochem. 2020;121(2):1635–1648. doi:10.1002/jcb.2939831535407
  • LiZT, ZhangFX, FanCL, et al. Discovery of potential Q-marker of traditional Chinese medicine based on plant metabolomics and network pharmacology: periplocae cortex as an example. Phytomedicine. 2021;85:153535. doi:10.1016/j.phymed.2021.15353533819766
  • PanL, LiZ, WangY, et al. Network pharmacology and metabolomics study on the intervention of traditional Chinese medicine Huanglian decoction in rats with type 2 diabetes mellitus. J Ethnopharmacol. 2020;258:112842. doi:10.1016/j.jep.2020.11284232333952
  • DainaA, MichielinO, ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364. doi:10.1093/nar/gkz38231106366
  • CloughE, BarrettT. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110. doi:10.1007/978-1-4939-3578-9_527008011
  • ZhouY, ZhouB, PacheL, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-630944313
  • DonchevaNT, MorrisJH, GorodkinJ, et al. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18(2):623–632. doi:10.1021/acs.jproteome.8b0070230450911
  • MarianoLNB, ArrudaC, SomensiLB, et al. Brazilian green propolis hydroalcoholic extract reduces colon damages caused by dextran sulfate sodium-induced colitis in mice. Inflammopharmacology. 2018;26(5):1283–1292. doi:10.1007/s10787-018-0467-z29633104
  • MeurerMC, MeesM, MarianoLNB, et al. Hydroalcoholic extract of Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves the oxidative stress in an animal model of ulcerative colitis. Nutr Res. 2019;66:95–106. doi:10.1016/j.nutres.2019.03.00530979660
  • FarooqSM, HouY, LiH, et al. Disruption of GPR35 exacerbates dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. 2018;63(11):2910–2922. doi:10.1007/s10620-018-5216-z30043283
  • SongW, QiaoX, ChenK, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Anal Chem. 2017;89(5):3146–3153. doi:10.1021/acs.analchem.6b0491928192986
  • TanakaK, HayashiK, FahadA, AritaM. Multi-stage mass spectrometric analysis of saponins in Glycyrrhiza radix. Nat Prod Commun. 2011;6(1):7–10. PMID: 21366035.21366035
  • ChangGH, BoYY, CuiJ, et al. Main chemical constituents in aerial parts of Glycyrrhiza uralensis by UPLC-Q-Exactive Orbitrap-MS. Zhongguo Zhong Yao Za Zhi. 2021;46(6):1449–1459. doi:10.19540/j.cnki.cjcmm.20201225.30133787143
  • FongSY, WongYC, ZuoZ. Development of a SPE-LC/MS/MS method for simultaneous quantification of baicalein, wogonin, oroxylin A and their glucuronides baicalin, wogonoside and oroxyloside in rats and its application to brain uptake and plasma pharmacokinetic studies. J Pharm Biomed Anal. 2014;97:9–23. doi:10.1016/j.jpba.2014.03.03324803030
  • ChaiCC, CaoY, MaoM, et al. Comparison of chemical compositions before and after wine-frying of Scutellaria baicalensis based on HPLC characteristic chromatogram, UPLC-Q-TOF/ MS qualitative and multi-component quantitative analysis. Chin Tradit Herb Drugs. 2020;51(9):2436–2447. doi:10.7501/j.issn.0253-2670.2020.09.019
  • WeiY, WangSY, WuSY, et al. Qualitative characterization of flavonoids in Scutellariae Radix by using PREC-IDA-EPI. Zhongguo Zhong Yao Za Zhi. 2018;43(2):345–352. doi:10.19540/j.cnki.cjcmm.20171027.00429552854
  • CuiYY, ZhouYF, MaYQ, et al. Differences analysis of chemical composition of raw and fried Glycyrrhiza uralensis based on UPLC-QTOF-MS. Chin Pharm. 2020;31(9):1049–1053. doi:10.6039/j.issn.1001-0408.2020.09.06
  • SunX, WenHM, CuiXB, et al. Qualitative evaluation of Atractylodis Macrocephalae rhizoma from different habitats by HPLC-PDA fingerprint combined with UFLC-Q-TOF/MS qualitative identification. Chin Tradit Herb Drugs. 2016;47(19):3494–3501. doi:10.7501/j.issn.0253-2670.2016.19.023
  • CaoG, LiQ, CaiH, et al. Investigation of the chemical changes from crude and processed Paeoniae Radix Alba-Atractylodis Macrocephalae rhizoma herbal pair extracts by using Q exactive high-performance benchtop quadrupole-orbitrap LC-MS/MS. Evid Based Complement Alternat Med. 2014;2014:170959. doi:10.1155/2014/17095924876867
  • ZhangBY, JiangZZ, WangYF, et al. Analysis of chemical constituents in fresh, dried and prepared Rehmanniae Radix by UPLC/ESI-Q-TOF MS. Chin Tradit Patent Med. 2016;38(5):1104–1108. doi:10.3969/j.issn.1001-1528.2016.05.029
  • QiaoX, LiR, SongW, et al. A targeted strategy to analyze untargeted mass spectral data: rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J Chromatogr A. 2016;1441:83–95. doi:10.1016/j.chroma.2016.02.07926952367
  • WangL, TanN, WangH, et al. A systematic analysis of natural alpha-glucosidase inhibitors from flavonoids of Radix scutellariae using ultrafiltration UPLC-TripleTOF-MS/MS and network pharmacology. BMC Complement Med Ther. 2020;20(1):72. doi:10.1186/s12906-020-2871-332143602
  • ZhangDK, HanX, RuiYL, et al. Analysis on characteristic constituents of crude Aconitum carmichaelii in different regions based on UPLC-Q-TOF-MS. Zhongguo Zhong Yao Za Zhi. 2016;41(3):463–469. doi:10.4268/cjcmm2016031828868865
  • YeX, WuJ, ZhangD, et al. How Aconiti Radix cocta can treat gouty arthritis based on systematic pharmacology and UPLC-QTOF-MS/MS. Front Pharmacol. 2021;12:618844. doi:10.3389/fphar.2021.61884433995019
  • ZhouSS, MaZC, LiangQD, et al. UPLC/Q-TOF-MS-based chemical profiling approach to evaluate the chemical constitution of Radix Aconiti lateralis preparata in the process of decoction. Zhong Xi Yi Jie He Xue Bao. 2012;10(8):894–900. doi:10.3736/jcim2012081022883406
  • ZhuH, WangC, QiY, et al. Fingerprint analysis of Radix Aconiti using ultra-performance liquid chromatography-electrospray ionization/ tandem mass spectrometry (UPLC-ESI/MS n) combined with stoichiometry. Talanta. 2013;103:56–65. doi:10.1016/j.talanta.2012.10.00623200358
  • O’SheaNR, SmithAM. Matrix metalloproteases role in bowel inflammation and inflammatory bowel disease: an up to date review. Inflamm Bowel Dis. 2014;20(12):2379–2393. doi:10.1097/MIB.000000000000016325222664
  • MaronekM, MarafiniI, GardlikR, et al. Metalloproteinases in inflammatory bowel diseases. J Inflamm Res. 2021;14:1029–1041. doi:10.2147/JIR.S28828033790618
  • de BruynM, VandoorenJ, Ugarte-BerzalE, et al. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol. 2016;51(5):295–358. doi:10.1080/10409238.2016.119953527362691