149
Views
9
CrossRef citations to date
0
Altmetric
Original Research

The Effects of Primary Unconjugated Bile Acids on Nanoencapsulated Pharmaceutical Formulation of Hydrophilic Drugs: Pharmacological Implications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , , , , & ORCID Icon show all
Pages 4423-4434 | Published online: 23 Oct 2021

References

  • MonteMJ, MarinJJ, AnteloA, Vazquez-TatoJ. Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol. 2009;15(7):804–816. doi:10.3748/wjg.15.80419230041
  • ThomasC, PellicciariR, PruzanskiM, AuwerxJ, SchoonjansK. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7(8):678–693. doi:10.1038/nrd261918670431
  • MooranianA, Raj WagleS, KovacevicB, et al. Bile acid bio-nanoencapsulation improved drug targeted-delivery and pharmacological effects via cellular flux: 6-months diabetes preclinical study. Sci Rep. 2020;10(1):1–15. doi:10.1038/s41598-019-53999-131913322
  • WagleSR, WalkerD, KovacevicB, et al. Micro-nano formulation of bile-gut delivery: rheological, stability and cell survival, basal and maximum respiration studies. Sci Rep. 2020;10(1):1–10. doi:10.1038/s41598-020-64355-z31913322
  • MooranianA, ZamaniN, TakechiR, et al. Pharmacological effects of nanoencapsulation of human-based dosing of probucol on ratio of secondary to primary bile acids in gut, during induction and progression of type 1 diabetes. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S748–S754. doi:10.1080/21691401.2018.151157230422681
  • KhairyMA, MansourFR. Simultaneous determination of ursodeoxycholic acid and chenodeoxycholic acid in pharmaceutical dosage form by HPLC-UV detection. J AOAC Int. 2017;100(1):59–64. doi:10.5740/jaoacint.16-017628825537
  • Ghosh LaskarM, ErikssonM, RudlingM, AngelinB. Treatment with the natural FXR agonist chenodeoxycholic acid reduces clearance of plasma LDL whilst decreasing circulating PCSK9, lipoprotein(a) and apolipoprotein C-III. J Intern Med. 2017;281(6):575–585. doi:10.1111/joim.1259428145001
  • SundaramSS, BoveKE, LovellMA, SokolRJ. Mechanisms of disease: inborn errors of bile acid synthesis. Nat Clin Pract Gastroenterol Hepatol. 2008;5(8):456–468. doi:10.1038/ncpgasthep117918577977
  • NishidaS, IshizawaM, KatoS, MakishimaM. Vitamin D receptor deletion changes bile acid composition in mice orally administered chenodeoxycholic acid. J Nutr Sci Vitaminol. 2020;66(4):370–374. doi:10.3177/jnsv.66.37032863311
  • MathavanS, Chen-TanN, ArfusoF, Al-SalamiH. The role of the bile acid chenodeoxycholic acid in the targeted oral delivery of the anti-diabetic drug gliclazide, and its applications in type 1 diabetes. Artif Cells Nanomed Biotechnol. 2016;44(6):1508–1519. doi:10.3109/21691401.2015.105880726212118
  • MooranianA, ZamaniN, MikovM, et al. Bio micro-nano technologies of antioxidants optimised their pharmacological and cellular effects, ex vivo, in pancreatic β-cells. Nanotechnol Sci Appl. 2020;13:1–9. doi:10.2147/NSA.S21232332021126
  • MooranianA, NegruljR, TakechiR, JamiesonE, MorahanG, Al-SalamiH. Electrokinetic potential-stabilization by bile acid-microencapsulating formulation of pancreatic beta-cells cultured in high ratio poly-L-ornithine-gel hydrogel colloidal dispersion: applications in cell-biomaterials, tissue engineering and biotechnological applications. Artif Cells Nanomed Biotechnol. 2018;46(6):1156–1162.28776395
  • MrestaniY, MarestaniZ, NeubertRH. The effect of a functional group in penicillin derivatives on the interaction with bile salt micelles studied by micellar electrokinetic chromatography. Electrophoresis. 2001;22(16):3573–3577. doi:10.1002/1522-2683(200109)22:16<3573::AID-ELPS3573>3.0.CO;2-K11669544
  • GallardoV, MoralesME, RuizMA, DelgadoAV. An experimental investigation of the stability of ethylcellulose latex: correlation between zeta potential and sedimentation. Eur J Pharm Sci. 2005;26(2):170–175. doi:10.1016/j.ejps.2005.05.00816005193
  • DasS, BellareJR, BanerjeeR. Protein based nanoparticles as platforms for aspirin delivery for ophthalmologic applications. Colloids Surf B Biointerfaces. 2012;93:161–168. doi:10.1016/j.colsurfb.2011.12.03322305122
  • ThakralS, ThakralNK, MajumdarDK. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131–149. doi:10.1517/17425247.2013.73696223102011
  • GotoS, KawataM, NakamuraM, MaekawaK, AoyamaT. Eudragit RS and RL (acrylic resins) microcapsules as pH insensitive and sustained release preparations of ketoprofen. J Microencapsul. 1986;3(4):293–304. doi:10.3109/026520486090217993508190
  • MooranianA, NegruljR, Al-SalamiH. Primary bile acid chenodeoxycholic acid-based microcapsules to examine β-cell survival and the inflammatory response. BioNanoScience. 2016;6:103–109. doi:10.1007/s12668-016-0198-9
  • MooranianA, NegruljR, Chen-TanN, et al. Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol. Drug Des Devel Ther. 2014;8:1221.
  • MooranianA, NegruljR, Chen-TanN, WattsGF, ArfusoF, Al-SalamiH. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer. Drug Des Devel Ther. 2014;8:1673.
  • MooranianA, NegruljR, MikovM, Golocorbin-KonS, ArfusoF, Al-SalamiH. Novel chenodeoxycholic acid–sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study. J Microencapsul. 2015;32:589–597. doi:10.3109/02652048.2015.106592226190214
  • MooranianA, NegruljR, Al-SalamiH. The influence of stabilized deconjugated ursodeoxycholic acid on polymer-hydrogel system of transplantable NIT-1 cells. Pharm Res. 2016;33(5):1182–1190. doi:10.1007/s11095-016-1863-y26818840
  • MooranianA, NegruljR, Al-SallamiH, et al. Probucol release from novel multicompartmental microcapsules for the oral targeted delivery in type 2 diabetes. AAPS PharmSciTech. 2015;16(1):45–52. doi:10.1208/s12249-014-0205-925168450
  • MooranianA, NegruljR, MathavanS, et al. Stability and release kinetics of an advanced gliclazide-cholic acid formulation: the use of artificial-cell microencapsulation in slow release targeted oral delivery of antidiabetics. J Pharm Innov. 2014;9:150–157. doi:10.1007/s12247-014-9182-524829616
  • NegruljR, MooranianA, Al-SalamiH. Potentials and limitations of bile acids in type 2 diabetes mellitus: applications of microencapsulation as a novel oral delivery system. J Endocrinol Diabetes Mellit. 2013;1:49–59.
  • MathavanS, IonescuCM, KovacevicB, et al. Formulation buoyancy of nanoencapsulated gliclazide using primary, conjugated and deconjugated bile acids. Ther Deliv. 2019;10(9):573–583. doi:10.4155/tde-2019-0058
  • MamoJCL, LamV, BrookE, et al. Probucol prevents blood–brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res. 2019;16(1):87–97. doi:10.1177/147916411879527430156119
  • MooranianA, NegruljR, TakechiR, et al. Alginate-combined cholic acid increased insulin secretion of microencapsulated mouse cloned pancreatic β cells. Ther Deliv. 2017;8(10):833–842. doi:10.4155/tde-2017-004228944743
  • MooranianN, Al-SalamiH. The effects of ionic gelation- vibrational jet flow technique in fabrication of microcapsules incorporating β-cell: applications in type-1 diabetes. Curr Diabetes Rev. 2017;13(1):91–96. doi:10.2174/157339981266615122910175626710877
  • NegruljR, MooranianA, Chen-TanN, et al. Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes. Artif Cells Nanomed Biotechnol. 2016;44(5):1290–1297. doi:10.3109/21691401.2015.102484525811999
  • MooranianA, ZamaniN, TakechiR, et al. Modulatory nano/micro effects of diabetes development on pharmacology of primary and secondary bile acids concentrations. Curr Diabetes Rev. 2020;16(8):900–909. doi:10.2174/138945012166620020411512132013849
  • MooranianA, ZamaniN, MikovM, et al. A second-generation micro/nano capsules of an endogenous primary un-metabolised bile acid, stabilized by Eudragit-alginate complex with antioxidant compounds. Saudi Pharm J. 2020;28(2):165–171. doi:10.1016/j.jsps.2019.11.01732042255
  • MooranianA, ZamaniN, MikovM, et al. Bio micro-nano technologies of antioxidants optimised their pharmacological and cellular effects, ex vivo, in pancreatic β-cells. Nanotechnol Sci Appl. 2020;13:1–9.32021126
  • MooranianA, ZamaniN, KovacevicB, et al. Pharmacological effects of secondary bile acid microparticles in diabetic murine model. Curr Diabetes Rev. 2020. doi:10.2174/1573399816666200626213735.
  • MooranianA, NegruljR, Al-SalamiH. The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies. Drug Deliv Transl Res. 2016;6(1):17–23. doi:10.1007/s13346-015-0268-526671765
  • MooranianA, NegruljR, ArfusoF, Al-SalamiH. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells. Artif Cells Nanomed Biotechnol. 2016;44:194–200. doi:10.3109/21691401.2014.93445725014218
  • MooranianA, NegruljR, ArfusoF, Al-SalamiH. Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: formulation characterization and effects on production of insulin and inflammation in a pancreatic β-cell line. Artif Cells, Nanomed Biotechnol. 2016;44(7):1642–1653. doi:10.3109/21691401.2015.106929926377035
  • de BoerGB, de WeerdC, ThoenesD, GoossensHW. Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering. Part Part Syst Charact. 1987;4(1‐4):14–19. doi:10.1002/ppsc.19870040104
  • GedawyA, Al-SalamiH, DassCR. Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J Food Drug Anal. 2019;27(1):315–322. doi:10.1016/j.jfda.2018.06.00730648585
  • GedawyA, DassCR, Al-SalamiH. Polydimethylsiloxane-customized nanoplatform for delivery of antidiabetic drugs. Ther Deliv. 2020;11(7):415–429. doi:10.4155/tde-2020-004932594887
  • GedawyA, Al-SalamiH, DassCR. Advanced and multifaceted stability profiling of the first-line antidiabetic drugs metformin, gliclazide and glipizide under various controlled stress conditions. Saudi Pharm J. 2020;28(3):362–368. doi:10.1016/j.jsps.2020.01.01732194338
  • MooranianA, ZamaniN, MikovM, et al. Novel nano-encapsulation of probucol in microgels: scanning electron micrograph characterizations, buoyancy profiling, and antioxidant assay analyses. Artif Cells, Nanomed Biotechnol. 2018;46:S741–S7. doi:10.1080/21691401.2018.151157130260253
  • Van MeerlooJ, KaspersGJ, CloosJ. Cell sensitivity assays: the MTT assay.Methods Mol Biol. 2011;731:237–245. doi:10.1007/978-1-61779-080-5_20.
  • MooranianA, NegruljR, Chen-TanN, et al. Advanced bile acid-based multi-compartmental microencapsulated pancreatic β-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment. Artif Cells Nanomed Biotechnol. 2016;44(2):588–595. doi:10.3109/21691401.2014.97180625358121
  • NakashimaK, KandaY, HirokawaY, KawasakiF, MatsukiM, KakuK. MIN6 is not a pure beta cell line but a mixed cell line with other pancreatic endocrine hormones. Endocr J. 2009;56:45–53.18845907
  • PatelKD, PatelNK. Formulation and evaluation of metformin hydrochloride microparticles by emulsion solvent evaporation technique. J Drug Deliv Ther. 2013;3(2). doi:10.22270/jddt.v3i2.471
  • VinothiniK, RajanM. Chapter 9 - Mechanism for the nano-based drug delivery system. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier; 2019:219–263. doi:10.1016/B978-0-12-814031-4.00009-X
  • GumustasM, Sengel-TurkCT, GumustasA, OzkanSA, UsluB. Chapter 5 - Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. In: Grumezescu AM, editor. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier; 2017:67–108.
  • WagleSR, KovacevicB, WalkerD, et al. Alginate-based drug oral targeting using bio-micro/nano encapsulation technologies. Expert Opin Drug Deliv. 2020;17(10):1361–1376. doi:10.1080/17425247.2020.178958732597249
  • KecmanS, ŠkrbićR, Badnjevic CengicA, et al. Potentials of human bile acids and their salts in pharmaceutical nano delivery and formulations adjuvants. Technol Health Care. 2020;28(3):325–335. doi:10.3233/THC-19184531594273
  • MooranianA, ZamaniN, MikovM, et al. Novel nano-encapsulation of probucol in microgels: scanning electron micrograph characterizations, buoyancy profiling, and antioxidant assay analyses. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S741–S747.30260253
  • MooranianA, ZamaniN, MikovM, et al. Eudragit®-based microcapsules of probucol with a gut-bacterial processed secondary bile acid. Ther Deliv. 2018;9(11):811–821. doi:10.4155/tde-2018-003630444461
  • MooranianA, NegruljR, TakechiR, MamoJ, Al-SallamiH, Al-SalamiH. The biological effects of the hypolipidaemic drug probucol microcapsules fed daily for 4 weeks, to an insulin-resistant mouse model: potential hypoglycaemic and anti-inflammatory effects. Drug Deliv Transl Res. 2018;8(3):543–551. doi:10.1007/s13346-017-0473-529313296
  • TanQ, BieM, WangZ, et al. Insights into the mechanism of bile salt aggregates forming in a PEGylated amphiphilic polymer/bile salt mixed micelle. ChemistrySelect. 2018;3(13):3641–3651. doi:10.1002/slct.201800382
  • KshirsagarS, BhalekarM, UmapR. In vitro in vivo comparison of two pH sensitive Eudragit polymers for colon specific drug delivery. J Pharm Sci Res. 2009;1(4):61.
  • MooranianA, ZamaniN, MikovM, et al. Eudragit®-based microcapsules of probucol with a gut-bacterial processed secondary bile acid. Ther Deliv. 2018;9(11):811–821.30444461
  • MooranianA, WagleSR, KovacevicB, et al. Bile acid bio-nanoencapsulation improved drug targeted-delivery and pharmacological effects via cellular flux: 6-months diabetes preclinical study. Sci Rep. 2020;10(1):1–15.31913322
  • DyrszkaH, SalenG, ZakiFG, ChenT, MosbachE. Hepatic toxicity in the rhesus monkey treated with chenodeoxycholic acid for 6 months: biochemical and ultrastructural studies. Gastroenterology. 1976;70(1):93–104. doi:10.1016/S0016-5085(76)80409-X812760
  • RengaB, MencarelliA, VavassoriP, BrancaleoneV, FiorucciS. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta Mol Basis Dis. 2010;1802(3):363–372. doi:10.1016/j.bbadis.2010.01.002
  • MooranianA, ZamaniN, IonescuCM, et al. Oral gavage of nano-encapsulated conjugated acrylic acid-bile acid formulation in type 1 diabetes altered pharmacological profile of bile acids, and improved glycaemia and suppressed inflammation. Pharmacol Rep. 2020;72:1–11.32016853
  • GongZ, ZhouJ, ZhaoS, et al. Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget. 2016;7(51):83951. doi:10.18632/oncotarget.1379627924062
  • XieK, XuB, ZhangY, et al. A multi‐method evaluation of the effects of Inflammatory cytokines (IL‐1β, IFN‐γ, TNF‐α) on pancreatic β‐cells. J Cell Physiol. 2018;233(12):9375–9382. doi:10.1002/jcp.2651829923197
  • OshiMA, NaeemM, BaeJ, et al. Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease. Carbohydr Polym. 2018;198:434–442. doi:10.1016/j.carbpol.2018.06.10730093020
  • BarthsonJ, GermanoCM, MooreF, et al. Cytokines tumor necrosis factor-α and interferon-γ induce pancreatic β-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem. 2011;286(45):39632–39643. doi:10.1074/jbc.M111.25359121937453
  • WardJB, LajczakNK, KellyOB, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol. 2017;312(6):G550–G558. doi:10.1152/ajpgi.00256.201628360029
  • HorikawaT, OshimaT, LiM, et al. Chenodeoxycholic acid releases proinflammatory cytokines from small intestinal epithelial cells through the farnesoid X receptor. Digestion. 2019;100(4):286–294. doi:10.1159/00049668730844798
  • Mooranian A, Ionescu CM, Wagle SR, et al. Probucol Pharmacological and Bio-Nanotechnological Effects on Surgically Transplanted Graft Due to Powerful Anti-Inflammatory, Anti-Fibrotic and Potential Bile Acid Modulatory Actions. Pharmaceutics. 2021;13(8):1304. doi:10.3390/pharmaceutics13081304
  • Wagle SR, Kovacevic B, Ionescu CM, et al. Pharmacological and Biological Study of Microencapsulated Probucol-Secondary Bile Acid in a Diseased Mouse Model. Pharmaceutics. 2021;13(8):1223. doi:10.3390/pharmaceutics13081223
  • Mooranian A, Foster T, Ionescu CM, et al. Enhanced Bilosomal Properties Resulted in Optimum Pharmacological Effects by Increased Acidification Pathways. Pharmaceutics. 2021;13(8):1184. doi:10.3390/pharmaceutics13081184
  • Mooranian A, Jones M, Ionescu CM, et al. Advancements in Assessments of Bio-Tissue Engineering and Viable Cell Delivery Matrices Using Bile Acid-Based Pharmacological Biotechnologies. Nanomaterials. 2021;11(7):1861. doi:10.3390/nano11071861