201
Views
2
CrossRef citations to date
0
Altmetric
Review

Sugammadex, the Guardian of Deep Muscle Relaxation During Conventional and Robot-Assisted Laparoscopic Surgery: A Narrative Review

, ORCID Icon, , , &
Pages 3893-3901 | Published online: 14 Sep 2021

References

  • GordonAG, MagosAL. The development of laparoscopic surgery. Baillieres Clin Obstet Gynaecol. 1989;3(3):429–449. doi:10.1016/S0950-3552(89)80003-3
  • Leal GhezziT, Campos CorletaO. 30 years of robotic surgery. World J Surg. 2016;40(10):2550–2557. doi:10.1007/s00268-016-3543-927177648
  • PhilipsPA, AmaralJF. Abdominal access complications in laparoscopic surgery. J Am Coll Surg. 2001;192(4):525–536. doi:10.1016/S1072-7515(01)00768-211294410
  • RadunovicM, LazovicR, PopovicN, et al. Complications of laparoscopic cholecystectomy: our experience from a retrospective analysis. Open Access Maced J Med Sci. 2016;4(4):641–646. doi:10.3889/oamjms.2016.12828028405
  • PhillipsJM. Complications in laparoscopy. Int J Gynaecol Obstet. 1977;15(2):157–162. doi:10.1002/j.1879-3479.1977.tb00668.x146627
  • BruintjesMH, van HeldenEV, BraatAE, et al. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: a systematic review and meta-analysis. Br J Anaesth. 2017;118(6):834–842. doi:10.1093/bja/aex11628575335
  • RosenbergJ, HerringWJ, BlobnerM, et al. Deep neuromuscular blockade improves laparoscopic surgical conditions: a randomized, controlled study. Adv Ther. 2017;34(4):925–936. doi:10.1007/s12325-017-0495-x28251555
  • RossiM. The Linus blanket. Minerva Anestesiol. 2016;82(7):725–727.26756381
  • LeeYJ, OhAY, KooBW, et al. Postoperative residual neuromuscular blockade after reversal based on a qualitative peripheral nerve stimulator response: a randomised controlled trial. Eur J Anaesthesiol. 2020;37(3):196–202. doi:10.1097/EJA.000000000000115731977627
  • Fuchs-BuderT, NemesR, SchmartzD. Residual neuromuscular blockade: management and impact on postoperative pulmonary outcome. Curr Opin Anaesthesiol. 2016;29(6):662–667. doi:10.1097/ACO.000000000000039527755128
  • HoningG, MartiniCH, BomA, et al. Safety of sugammadex for reversal of neuromuscular block. Expert Opin Drug Saf. 2019;18(10):883–891. doi:10.1080/14740338.2019.164939331359807
  • TogiokaBM, YanezD, AzizMF, HigginsJR, TekkaliP, TreggiariMM. Randomised controlled trial of sugammadex or neostigmine for reversal of neuromuscular block on the incidence of pulmonary complications in older adults undergoing prolonged surgery. Br J Anaesth. 2020;124(5):553–561. doi:10.1016/j.bja.2020.01.01632139135
  • CoutoM, CoutoJG, NunesCS, VideS, AmorimP, MendesJG. Systematic review on rocuronium continuous infusion for deep neuromuscular blockade. Curr Clin Pharmacol. 2019;16:64–72.
  • JohnsonA. Laparoscopic surgery. Lancet. 1997;349(9052):631–635. doi:10.1016/S0140-6736(96)10032-59057744
  • OtiC, MahendranM, SabirN. Anaesthesia for laparoscopic surgery. Br J Hosp Med (Lond). 2016;77(1):24–28. doi:10.12968/hmed.2016.77.1.2426903452
  • AtkinsonTM, GiraudGD, TogiokaBM, JonesDB, CigarroaJE. Cardiovascular and ventilatory consequences of laparoscopic surgery. Circulation. 2017;135(7):700–710. doi:10.1161/CIRCULATIONAHA.116.02326228193800
  • PetersBS, ArmijoPR, KrauseC, ChoudhurySA, OleynikovD. Review of emerging surgical robotic technology. Surg Endosc. 2018;32(4):1636–1655. doi:10.1007/s00464-018-6079-229442240
  • JaraRD, GuerronAD, PortenierD. Complications of robotic surgery. Surg Clin North Am. 2020;100(2):461–468. doi:10.1016/j.suc.2019.12.00832169190
  • KashtanJ, GreenJF, ParsonsEQ, HolcroftJW. Hemodynamic effect of increased abdominal pressure. J Surg Res. 1981;30(3):249–255. doi:10.1016/0022-4804(81)90156-67230773
  • CullenDJ, CoyleJP, TeplickR, LongMC. Cardiovascular, pulmonary, and renal effects of massively increased intra-abdominal pressure in critically ill patients. Crit Care Med. 1989;17(2):118–121. doi:10.1097/00003246-198902000-000022914444
  • BoersmaE, KertaiMD, SchoutenO, et al. Perioperative cardiovascular mortality in noncardiac surgery: validation of the Lee cardiac risk index. Am J Med. 2005;118(10):1134–1141. doi:10.1016/j.amjmed.2005.01.06416194645
  • Fuchs-BuderT, SchmartzD, BaumannC, et al. Deep neuromuscular blockade improves surgical conditions during gastric bypass surgery for morbid obesity: a randomised controlled trial. Eur J Anaesthesiol. 2019;36(7):486–493. doi:10.1097/EJA.000000000000099630985536
  • RavalAD, DeshpandeS, RabarS, et al. Does deep neuromuscular blockade during laparoscopy procedures change patient, surgical, and healthcare resource outcomes? A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2020;15(4):e0231452. doi:10.1371/journal.pone.023145232298304
  • KooBW, OhAY, RyuJH, et al. Effects of deep neuromuscular blockade on the stress response during laparoscopic gastrectomy randomized controlled trials. Sci Rep. 2019;9(1):12411. doi:10.1038/s41598-019-48919-231455832
  • ChoYJ, PaikH, JeongSY, et al. Lower intra-abdominal pressure has no cardiopulmonary benefits during laparoscopic colorectal surgery: a double-blind, randomized controlled trial. Surg Endosc. 2018;32(11):4533–4542. doi:10.1007/s00464-018-6204-229761274
  • BarrioJ, ErrandoCL, San MiguelG, et al. Effect of depth of neuromuscular blockade on the abdominal space during pneumoperitoneum establishment in laparoscopic surgery. J Clin Anesth. 2016;34:197–203. doi:10.1016/j.jclinane.2016.04.01727687373
  • DuboisPE, PutzL, JamartJ, MarottaML, GourdinM, DonnezO. Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: a randomised controlled trial. Eur J Anaesthesiol. 2014;31(8):430–436. doi:10.1097/EJA.000000000000009424809482
  • MartiniCH, BoonM, BeversRF, AartsLP, DahanA. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br J Anaesth. 2014;112(3):498–505. doi:10.1093/bja/aet37724240315
  • Staehr-RyeAK, RasmussenLS, RosenbergJ, et al. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg. 2014;119(5):1084–1092. doi:10.1213/ANE.000000000000031624977638
  • MadsenMV, GatkeMR, SpringborgHH, RosenbergJ, LundJ, IstreO. Optimising abdominal space with deep neuromuscular blockade in gynaecologic laparoscopy–a randomised, blinded crossover study. Acta Anaesthesiol Scand. 2015;59(4):441–447. doi:10.1111/aas.1249325789421
  • SoderstromCM, Borregaard MediciR, AssadzadehS, et al. Deep neuromuscular blockade and surgical conditions during laparoscopic ventral hernia repair: a randomised, blinded study. Eur J Anaesthesiol. 2018;35(11):876–882. doi:10.1097/EJA.000000000000083329878947
  • ParkSK, SonYG, YooS, LimT, KimWH, KimJT. Deep vs. moderate neuromuscular blockade during laparoscopic surgery: a systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35(11):867–875. doi:10.1097/EJA.000000000000088430188357
  • YooYC, KimNY, ShinS, et al. The intraocular pressure under deep versus moderate neuromuscular blockade during low-pressure robot assisted laparoscopic radical prostatectomy in a randomized trial. PLoS One. 2015;10(8):e0135412. doi:10.1371/journal.pone.013541226317357
  • AwadH, SantilliS, OhrM, et al. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009;109(2):473–478. doi:10.1213/ane.0b013e3181a9098f19608821
  • CheathamML, De WaeleJJ, De LaetI, et al.; World Society of the Abdominal Compartment Syndrome Clinical Trials Working, G. The impact of body position on intra-abdominal pressure measurement: a multicenter analysis. Crit Care Med. 2009;37(7):2187–2190. doi:10.1097/CCM.0b013e3181a021fa19487946
  • ArvizoC, MehtaST, YunkerA. Adverse events related to Trendelenburg position during laparoscopic surgery: recommendations and review of the literature. Curr Opin Obstet Gynecol. 2018;30(4):272–278. doi:10.1097/GCO.000000000000047129939851
  • SchrammP, TreiberAH, BerresM, et al. Time course of cerebrovascular autoregulation during extreme Trendelenburg position for robotic-assisted prostatic surgery. Anaesthesia. 2014;69(1):58–63. doi:10.1111/anae.1247724256501
  • Fuchs-BuderT, BrunaudL, BrunaudL. Neuromuscular block in laparoscopic surgery. Minerva Anestesiol. 2018;84(4):509–514. doi:10.23736/S0375-9393.17.12330-829239154
  • RavalAD, UyeiJ, KarabisA, BashLD, BrullSJ. Incidence of residual neuromuscular blockade and use of neuromuscular blocking agents with or without antagonists: a systematic review and meta-analysis of randomized controlled trials. J Clin Anesth. 2020;64:109818. doi:10.1016/j.jclinane.2020.10981832304958
  • AhluwaliaJS, MorleyCJ, MockridgeJN. Computerised determination of spontaneous inspiratory and expiratory times in premature neonates during intermittent positive pressure ventilation. II: results from 20 babies. Arch Dis Child Fetal Neonatal Ed. 1994;71(3):F161–F164. doi:10.1136/fn.71.3.F1617820709
  • YuB, OuyangB, GeS, et al. Incidence of postoperative residual neuromuscular blockade after general anesthesia: a prospective, multicenter, anesthetist-blind, observational study. Curr Med Res Opin. 2016;32(1):1–9. doi:10.1185/03007995.2015.1103213
  • FortierLP, McKeenD, TurnerK, et al. The RECITE study: a Canadian prospective, multicenter study of the incidence and severity of residual neuromuscular blockade. Anesth Analg. 2015;121(2):366–372. doi:10.1213/ANE.000000000000075725902322
  • BronsertMR, HendersonWG, MonkTG, et al. Intermediate-acting nondepolarizing neuromuscular blocking agents and risk of postoperative 30-day morbidity and mortality, and long-term survival. Anesth Analg. 2017;124(5):1476–1483. doi:10.1213/ANE.000000000000184828244947
  • GrabitzSD, RajaratnamN, ChhaganiK, et al. The effects of postoperative residual neuromuscular blockade on hospital costs and intensive care unit admission: a population-based cohort study. Anesth Analg. 2019;128(6):1129–1136. doi:10.1213/ANE.000000000000402831094777
  • KiekkasP, BakalisN, StefanopoulosN, KonstantinouE, ArethaD. Residual neuromuscular blockade and postoperative critical respiratory events: literature review. J Clin Nurs. 2014;23(21–22):3025–3035. doi:10.1111/jocn.1250824460786
  • KirmeierE, ErikssonLI, LewaldH, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med. 2019;7(2):129–140.30224322
  • De JongRH. Controlled relaxation. I. Quantitation of electromyogram with abdominal relaxation. JAMA. 1966;197(6):393–395. doi:10.1001/jama.1966.031100600670164223415
  • NaguibM, BrullSJ, JohnsonKB. Conceptual and technical insights into the basis of neuromuscular monitoring. Anaesthesia. 2017;72(Suppl 1):16–37. doi:10.1111/anae.1373828044330
  • NemesR, NagyG, MurphyGS, LogvinovII, FulesdiB, RenewJR. Awake volunteer pain scores during neuromuscular monitoring. Anesth Analg. 2020;130(4):941–948. doi:10.1213/ANE.000000000000432631348055
  • Viby-MogensenJ. Neuromuscular monitoring. Curr Opin Anaesthesiol. 2001;14(6):655–659. doi:10.1097/00001503-200112000-0001017019161
  • LedowskiT, O’DeaB, MeyerkortL, HegartyM, von Ungern-sternbergBS. Postoperative residual neuromuscular paralysis at an Australian tertiary children’s hospital. Anesthesiol Res Pract. 2015;2015:410248.26064105
  • ConnellyNR, SilvermanDG, O’ConnorTZ, BrullSJ. Subjective responses to train-of-four and double burst stimulation in awake patients. Anesth Analg. 1990;70(6):650–653. doi:10.1213/00000539-199006000-000122160781
  • NemesR, FulesdiB, PongraczA, et al. Impact of reversal strategies on the incidence of postoperative residual paralysis after rocuronium relaxation without neuromuscular monitoring: a partially randomised placebo controlled trial. Eur J Anaesthesiol. 2017;34(9):609–616. doi:10.1097/EJA.000000000000058528030444
  • SpadaroS, GrassoS, DresM, et al. Point of care ultrasound to identify diaphragmatic dysfunction after thoracic surgery. Anesthesiology. 2019;131(2):266–278. doi:10.1097/ALN.000000000000277431166236
  • KaralapillaiD, KaufmanM, WeinbergL. Sugammadex. Crit Care Resusc. 2013;15(1):57–62.23432503
  • PapathanasMR, KillianA. Sugammadex for neuromuscular blockade reversal. Adv Emerg Nurs J. 2017;39(4):248–257. doi:10.1097/TME.000000000000017029095176
  • ThompsonCA. Sugammadex approved to reverse NMBA effects. Am J Health Syst Pharm. 2016;73(3):100. doi:10.2146/news160009
  • DeyhimN, BeckA, BalkJ, LieblMG. Impact of sugammadex versus neostigmine/glycopyrrolate on perioperative efficiency. Clinicoecon Outcomes Res. 2020;12:69–79. doi:10.2147/CEOR.S22130832099426
  • SavicL, SavicS, HopkinsPM. Sugammadex: the sting in the tail?Br J Anaesth. 2018;121(4):694–697. doi:10.1016/j.bja.2018.07.01430236229
  • RichardsonMG, RaymondBL. Sugammadex administration in pregnant women and in women of reproductive potential: a narrative review. Anesth Analg. 2020;130(6):1628–1637. doi:10.1213/ANE.000000000000430531283616
  • MatsuiM, KonishiJ, SuzukiT, SekijimaC, MiyazawaN, YamamotoS. Reversibility of rocuronium-induced deep neuromuscular block with sugammadex in infants and children-a randomized study. Biol Pharm Bull. 2019;42(10):1637–1640. doi:10.1248/bpb.b19-0004431406051
  • BlazekER, PeakJG, PeakMJ. Singlet oxygen induces frank strand breaks as well as alkali- and piperidine-labile sites in supercoiled plasmid DNA. Photochem Photobiol. 1989;49(5):607–613. doi:10.1111/j.1751-1097.1989.tb08431.x2755997
  • OzgunC, CakanT, BaltaciB, BasarH. Comparison of reversal and adverse effects of sugammadex and combination of - Anticholinergic-Anticholinesterase agents in pediatric patients. J Res Med Sci. 2014;19(8):762–768.25422663
  • ChoHC, LeeJH, LeeSC, ParkSY, RimJC, ChoiSR. Use of sugammadex in lung cancer patients undergoing video-assisted thoracoscopic lobectomy. Korean J Anesthesiol. 2017;70(4):420–425. doi:10.4097/kjae.2017.70.4.42028794837
  • KheterpalS, VaughnMT, DubovoyTZ, et al. Sugammadex versus neostigmine for reversal of neuromuscular blockade and postoperative pulmonary complications (STRONGER): a multicenter matched cohort analysis. Anesthesiology. 2020;132(6):1371–1381. doi:10.1097/ALN.000000000000325632282427
  • FujitaA, IshibeN, YoshiharaT, et al. Rapid reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Acta Anaesthesiol Taiwan. 2014;52(2):54–58. doi:10.1016/j.aat.2014.04.00725016508
  • de SouzaCM, TardelliMA, TedescoH, et al. Efficacy and safety of sugammadex in the reversal of deep neuromuscular blockade induced by rocuronium in patients with end-stage renal disease: a comparative prospective clinical trial. Eur J Anaesthesiol. 2015;32(10):681–686. doi:10.1097/EJA.000000000000031226225497
  • MuramatsuT, IsonoS, IshikawaT, et al. Differences of recovery from rocuronium-induced deep paralysis in response to small doses of sugammadex between elderly and nonelderly patients. Anesthesiology. 2018;129(5):901–911. doi:10.1097/ALN.000000000000241230199419
  • de BoerHD, DriessenJJ, MarcusMA, KerkkampH, HeeringaM, KlimekM. Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex: a multicenter, dose-finding and safety study. Anesthesiology. 2007;107(2):239–244. doi:10.1097/01.anes.0000270722.95764.3717667567
  • PuhringerFK, RexC, SielenkamperAW, et al. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, Phase II trial. Anesthesiology. 2008;109(2):188–197. doi:10.1097/ALN.0b013e31817f5bc718648227
  • VymazalT, KrecmerovaM, BicekV, LischkeR. Feasibility of full and rapid neuromuscular blockade recovery with sugammadex in myasthenia gravis patients undergoing surgery - A series of 117 cases. Ther Clin Risk Manag. 2015;11:1593–1596. doi:10.2147/TCRM.S9300926508869
  • MouriH, JoT, MatsuiH, FushimiK, YasunagaH. Effect of sugammadex on postoperative myasthenic crisis in myasthenia gravis patients: propensity score analysis of a Japanese nationwide database. Anesth Analg. 2020;130(2):367–373. doi:10.1213/ANE.000000000000423931124838
  • McDonnellNJ, PavyTJ, GreenLK, PlattPR. Sugammadex in the management of rocuronium-induced anaphylaxis. Br J Anaesth. 2011;106(2):199–201. doi:10.1093/bja/aeq36621149287
  • TakazawaT, MitsuhataH, MertesPM. Sugammadex and rocuronium-induced anaphylaxis. J Anesth. 2016;30(2):290–297. doi:10.1007/s00540-015-2105-x26646837
  • MinKC, BondiskeyP, SchulzV, et al. Hypersensitivity incidence after sugammadex administration in healthy subjects: a randomised controlled trial. Br J Anaesth. 2018;121(4):749–757. doi:10.1016/j.bja.2018.05.05630236237
  • MoonYJ, KimSH, KimJW, LeeYK, JunIG, HwangGS. Comparison of postoperative coagulation profiles and outcome for sugammadex versus pyridostigmine in 992 living donors after living-donor hepatectomy. Medicine (Baltimore). 2018;97(11):e0129. doi:10.1097/MD.000000000001012929538210
  • TsurA, KalanskyA. Hypersensitivity associated with sugammadex administration: a systematic review. Anaesthesia. 2014;69(11):1251–1257. doi:10.1111/anae.1273624848211
  • CammuG, De KamPJ, DemeyerI, et al. Safety and tolerability of single intravenous doses of sugammadex administered simultaneously with rocuronium or vecuronium in healthy volunteers. Br J Anaesth. 2008;100(3):373–379. doi:10.1093/bja/aem40218238834
  • VanackerBF, VermeyenKM, StruysMM, et al. Reversal of rocuronium-induced neuromuscular block with the novel drug sugammadex is equally effective under maintenance anesthesia with propofol or sevoflurane. Anesth Analg. 2007;104(3):563–568. doi:10.1213/01.ane.0000231829.29177.8e17312209
  • De KamPJ, GrobaraP, ProhnM, et al. Effects of sugammadex on activated partial thromboplastin time and prothrombin time in healthy subjects. Int J Clin Pharmacol Ther. 2014;52(3):227–236. doi:10.5414/CP20197624447651
  • ItoS, SekiH, SannoheJ, OuchiT. A case of deep residual neuromuscular blockade after sugammadex administration. J Clin Anesth. 2019;58:33–34. doi:10.1016/j.jclinane.2019.04.03631059908
  • KopmanAF. Neostigmine versus sugammadex: which, when, and how much?Anesthesiology. 2010;113(5):1010–1011. doi:10.1097/ALN.0b013e3181f4184720852409
  • MirakhurRK. Sugammadex in clinical practice. Anaesthesia. 2009;64(Suppl 1):45–54. doi:10.1111/j.1365-2044.2008.05870.x19222431
  • BarrioJ, ErrandoCL, Garcia-RamonJ, SellesR, San MiguelG, GallegoJ. Influence of depth of neuromuscular blockade on surgical conditions during low-pressure pneumoperitoneum laparoscopic cholecystectomy: a randomized blinded study. J Clin Anesth. 2017;42:26–30. doi:10.1016/j.jclinane.2017.08.00528803124
  • MurphyGS, KopmanAF. “To reverse or not to reverse?”: the answer is clear!Anesthesiology. 2016;125(4):611–614. doi:10.1097/ALN.000000000000128027496655
  • BartelsK, HunterJM. Neostigmine versus sugammadex: the tide may be turning, but we still need to navigate the winds. Br J Anaesth. 2020;124(5):504–507. doi:10.1016/j.bja.2020.02.02132228868
  • KrauseM, McWilliamsSK, BullardKJ, et al. Neostigmine versus sugammadex for reversal of neuromuscular blockade and effects on reintubation for respiratory failure or newly initiated noninvasive ventilation: an interrupted time series design. Anesth Analg. 2020;131(1):141–151. doi:10.1213/ANE.000000000000450531702700
  • CarronM, ZarantonelloF, TellaroliP, OriC. Efficacy and safety of sugammadex compared to neostigmine for reversal of neuromuscular blockade: a meta-analysis of randomized controlled trials. J Clin Anesth. 2016;35:1–12. doi:10.1016/j.jclinane.2016.06.01827871504
  • HristovskaAM, DuchP, AllingstrupM, AfshariA. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017;8:CD012763.28806470
  • OhTK, JiE, NaHS. The effect of neuromuscular reversal agent on postoperative pain after laparoscopic gastric cancer surgery: comparison between the neostigmine and sugammadex. Medicine (Baltimore). 2019;98(26):e16142. doi:10.1097/MD.000000000001614231261539
  • CarronM, GasparettoM, VindigniV, FolettoM. Laparoscopic surgery in a morbidly obese, high-risk cardiac patient: the benefits of deep neuromuscular block and sugammadex. Br J Anaesth. 2014;113(1):186–187. doi:10.1093/bja/aeu21124942715
  • AnJ, NohH, KimE, LeeJ, WooK, KimH. Neuromuscular blockade reversal with sugammadex versus pyridostigmine/glycopyrrolate in laparoscopic cholecystectomy: a randomized trial of effects on postoperative gastrointestinal motility. Korean J Anesthesiol. 2020;73(2):137–144. doi:10.4097/kja.1936031636242
  • MadsenMV, IstreO, SpringborgHH, et al. Deep neuromuscular blockade and low insufflation pressure during laparoscopic hysterectomy. Dan Med J. 2017;64(5):A5364.28552090
  • PutzL, DransartC, JamartJ, MarottaML, DelnoozG, DuboisPE. Operating room discharge after deep neuromuscular block reversed with sugammadex compared with shallow block reversed with neostigmine: a randomized controlled trial. J Clin Anesth. 2016;35:107–113. doi:10.1016/j.jclinane.2016.07.03027871505
  • WangL, YaoL, YanP, et al. Robotic versus laparoscopic Roux-en-Y gastric bypass for morbid obesity: a systematic review and meta-analysis. Obes Surg. 2018;28(11):3691–3700. doi:10.1007/s11695-018-3458-730178157
  • RogulaT, KoprivanacM, JanikMR, et al. Does Robotic Roux-en-Y gastric bypass provide outcome advantages over standard laparoscopic approaches?Obes Surg. 2018;28(9):2589–2596. doi:10.1007/s11695-018-3228-629637410
  • Fazl AlizadehR, LiS, InabaCS, et al. Robotic versus laparoscopic sleeve gastrectomy: a MBSAQIP analysis. Surg Endosc. 2019;33(3):917–922. doi:10.1007/s00464-018-6387-630128823
  • AlhossainiRM, AltamranAA, SeoWJ, HyungWJ. Robotic gastrectomy for gastric cancer: current evidence. Ann Gastroenterol Surg. 2017;1(2):82–89. doi:10.1002/ags3.1202029863139
  • KaneWJ, CharlesEJ, MehaffeyJH, et al. Robotic compared with laparoscopic cholecystectomy: a propensity matched analysis. Surgery. 2020;167(2):432–435. doi:10.1016/j.surg.2019.07.02031492434
  • KayeAD, VadiveluN, AhujaN, MitraS, SilasiD, UrmanRD. Anesthetic considerations in robotic-assisted gynecologic surgery. Ochsner J. 2013;13(4):517–524.24358000
  • MinBH, OhTK, SongIA, JeonYT. Comparison of the effects of sugammadex and neostigmine on hospital stay in robot-assisted laparoscopic prostatectomy: a retrospective study. BMC Anesthesiol. 2020;20(1):178. doi:10.1186/s12871-020-01088-632693776
  • GeldnerG, NiskanenM, LaurilaP, et al. A randomised controlled trial comparing sugammadex and neostigmine at different depths of neuromuscular blockade in patients undergoing laparoscopic surgery. Anaesthesia. 2012;67(9):991–998. doi:10.1111/j.1365-2044.2012.07197.x22698066
  • TobiasJD, ThomasM. Current evidence for the use of sugammadex in children. Paediatr Anaesth. 2017;27(2):118–125. doi:10.1111/pan.1305027859917
  • CarronM, BertoncelloF, IepparielloG. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives. Clin Interv Aging. 2018;13:13–24. doi:10.2147/CIA.S13410829317806
  • HoggRM, MirakhurRK. Sugammadex: a selective relaxant binding agent for reversal of neuromuscular block. Expert Rev Neurother. 2009;9(5):599–608. doi:10.1586/ern.09.2219402771
  • MiyazakiY, SunagaH, KidaK, et al. Incidence of anaphylaxis associated with sugammadex. Anesth Analg. 2018;126(5):1505–1508. doi:10.1213/ANE.000000000000256229064876
  • GijsenberghF, RamaelS, HouwingN, van IerselT. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology. 2005;103(4):695–703. doi:10.1097/00000542-200510000-0000716192761
  • KingA, NaguibA, TobiasJD. Bradycardia in a pediatric heart transplant recipient: is it the sugammadex?J Pediatr Pharmacol Ther. 2017;22(5):378–381.29042841
  • CarlosRV, TorresMLA, de BoerHD. [Reversal of neuromuscular block with sugammadex in five heart transplant pediatric recipients]. Rev Bras Anestesiol. 2018;68(4):416–420. Portugegse. doi:10.1016/j.bjan.2017.10.008
  • StaalsLM, SnoeckMM, DriessenJJ, et al. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010;104(1):31–39. doi:10.1093/bja/aep34020007792
  • StaalsLM, SnoeckMM, DriessenJJ, FlocktonEA, HeeringaM, HunterJM. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth. 2008;101(4):492–497. doi:10.1093/bja/aen21618653492
  • PanhuizenIF, GoldSJ, BuerkleC, et al. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br J Anaesth. 2015;114(5):777–784. doi:10.1093/bja/aet58625829395
  • AsztalosL, Szabo-MaakZ, GajdosA, et al. Reversal of vecuronium-induced neuromuscular blockade with low-dose sugammadex at train-of-four count of four: a randomized controlled trial. Anesthesiology. 2017;127(3):441–449. doi:10.1097/ALN.000000000000174428640017
  • AouadMT, AlfahelWS, KaddoumRN, Siddik-SayyidSM. Half dose sugammadex combined with neostigmine is non-inferior to full dose sugammadex for reversal of rocuronium-induced deep neuromuscular blockade: a cost-saving strategy. BMC Anesthesiol. 2017;17(1):57. doi:10.1186/s12871-017-0348-928399799
  • ChenB. Sugammadex: a limited but important role in emergency medicine. Pediatr Emerg Care. 2020;36(6):296–301. doi:10.1097/PEC.000000000000212632483081
  • de BoerHD, CarlosRV, BrullSJ. Is lower-dose sugammadex a cost-saving strategy for reversal of deep neuromuscular block? Facts and fiction. BMC Anesthesiol. 2018;18(1):159. doi:10.1186/s12871-018-0605-630400850
  • SchallerSJ, FinkH. Sugammadex as a reversal agent for neuromuscular block: an evidence-based review. Core Evid. 2013;8:57–67.24098155
  • Yang L, Yang D, Li Q, Zuo Y, Lu D. Neostigmine for reversal of neuromuscular block in paediatric patients. Cochrane Database of Systematic Reviews 2014, Issue 5. Art. No.: CD010110. doi:10.1002/14651858.CD010110.pub2. Accessed 09 September 2021.