2,368
Views
99
CrossRef citations to date
0
Altmetric
Review

The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design

, , , , & ORCID Icon
Pages 4289-4338 | Published online: 13 Oct 2021

References

  • WangS, YuanXH, WangSQ, ZhaoW, ChenXB, YuB. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: synthesis and clinical application. Eur J Med Chem. 2021;214:113218. doi:10.1016/j.ejmech.2021.11321833540357
  • BullJA, MousseauJJ, PelletierG, CharetteAB. Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines. Chem Rev. 2012;112(5):2642–2713. doi:10.1021/cr200251d22352938
  • BoströmJ, BrownDG, YoungRJ, KeserüGM. Expanding the medicinal chemistry synthetic toolbox. Nat Rev Drug Discov. 2018;17(10):709–727. doi:10.1038/nrd.2018.11630140018
  • WangL, BhartiKR, PavlovPF, WinbladB. Small molecule therapeutics for tauopathy in Alzheimer’s disease: walking on the path of most resistance. Eur J Med Chem. 2021;209:112915. doi:10.1016/j.ejmech.2020.11291533139110
  • JubeteG, Puig de la BellacasaR, Estrada-TejedorR, TeixidóJ, BorrellJI. Pyrido[2,3-d]pyrimidin-7(8H)-ones: synthesis and biomedical applications. Molecules. 2019;24(22):4161. doi:10.3390/molecules24224161
  • MammolitiO, PalisseA, JoannesseC, et al. Discovery of the S1P2 antagonist GLPG2938 (1-[2-Ethoxy-6-(trifluoromethyl)-4-pyridyl]-3-[[5-methyl-6-[1-methyl-3-(trifluoromethyl)pyrazol-4-yl]pyridazin-3-yl]methyl]urea), a preclinical candidate for the treatment of idiopathic pulmonary fibrosis. J Med Chem. 2021;64(9):6037–6058. doi:10.1021/acs.jmedchem.1c0013833939425
  • RanK, ZengJ, WanG, et al. Design, synthesis and biological evaluations of a series of Pyrido[1,2-a]pyrimidinone derivatives as novel selective FGFR inhibitors. Eur J Med Chem. 2021;220:113499. doi:10.1016/j.ejmech.2021.11349933940465
  • YerraguntaV, PatilP, AnushaV, KumaraswamyT, SumanD, SamhithaT. Pyrimidine and its biological activity: a review. PharmaTutor. 2013;1(2):39–44.
  • DesaiNC, SomaniH, TrivediA, et al. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg Med Chem Lett. 2016;26(7):1776–1783. doi:10.1016/j.bmcl.2016.02.04326920799
  • CominsDL, HiguchiK, YoungDW. Dihydropyridine preparation and application in the synthesis of pyridine derivatives. Adv Heterocycl Chem. 2013;110:175–235. doi:10.1016/B978-0-12-408100-0.00006-9
  • LinSX, CurtisMA, SperryJ. Pyridine alkaloids with activity in the central nervous system. Bioorg Med Chem. 2020;28(24):115820. doi:10.1016/j.bmc.2020.11582033120080
  • PollakN, DölleC, ZieglerM. The power to reduce: pyridine nucleotides – small molecules with a multitude of functions. Biochem J. 2007;402(2):205–218. doi:10.1042/BJ2006163817295611
  • CoffinierD, KaimEL, GrimaudL, RuijterE, OrruRVA. A new multicomponent reaction for the synthesis of pyridines via cycloaddition of azadienes and ketenimines. Tetrahedron Lett. 2011;52(23):3023–3025. doi:10.1016/j.tetlet.2011.04.007
  • ZakharychevVV, KuzenkovAV, MartsynkevichAM. Good pyridine hunting: a biomimic compound, a modifier and a unique pharmacophore in agrochemicals. Chem Heterocycl Compd. 2020;56(12):1491–1516. doi:10.1007/s10593-020-02843-w
  • NeelyJM, RovisT. Pyridine synthesis by [4 + 2] cycloadditions of 1-azadienes: hetero-Diels Alder and transition metal-catalysed approaches. Org Chem Front. 2014;1(8):1010–1015. doi:10.1039/C4QO00187G
  • WanJP, LiuY. Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Adv. 2012;2(26):9763. doi:10.1039/c2ra21406g
  • AlizadehSR, EbrahimzadehMA. Antiviral activities of pyridine fused and pyridine containing heterocycles, a review (from 2000 to 2020). Mini Rev Med Chem. 2021;21. doi:10.2174/1389557521666210126143558.
  • Villamizar-MogotocoroA-F, Vargas-MéndezLY, KouznetsovVV. Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis. Eur J Pharm Sci. 2020;151:105374. doi:10.1016/j.ejps.2020.10537432450221
  • IoanP, CarosatiE, MicucciM, et al. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (Part 1): action in ion channels and GPCRs. Curr Med Chem. 2011;18(32):4901–4922. doi:10.2174/09298671179753517322050742
  • VelenaA, ZarkovicN, KlusaV, et al. 1,4-dihydropyridines as tools for mitochondrial medicine against oxidative stress and associated metabolic disorders. Curr Org Chem. 2017;21(20). doi:10.2174/1385272821666170207104206
  • PrachayasittikulS, PingaewR, WorachartcheewanA, et al. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev Med Chem. 2017;17(10):869–901. doi:10.2174/138955751666616092312580127670581
  • ÁlvarezR, AramburuL, PueblaP, et al. Pyridine based antitumour compounds acting at the colchicine site. Curr Med Chem. 2016;23(11):1100–1130. doi:10.2174/09298673231116042010482327117490
  • KlusaV. Atypical 1,4-dihydropyridine derivatives, an approach to neuroprotection and memory enhancement. Pharmacol Res. 2016;113:754–759. doi:10.1016/j.phrs.2016.05.01727234899
  • PetersJ, BoothA, PetersR. Potential for specific dihydropyridine calcium channel blockers to have a positive impact on cognitive function in humans: a systematic review. Ther Adv Chronic Dis. 2015;6(4):160–169. doi:10.1177/204062231558235326137206
  • LapidotI, AlbeckA, GellermanG, ShatzmillerS, GrynszpanF. 1,4-dihydropyridine cationic peptidomimetics with antibacterial activity. Int J Pept Res Ther. 2015;21(3):243–247. doi:10.1007/s10989-015-9460-1
  • BucciC, MamdaniMM, JuurlinkDN, TuJV. Dihydropyridine calcium channel blockers and cardiovascular outcomes in elderly patients: a population-based study. Can J Cardiol. 2008;24(8):629–632. doi:10.1016/s0828-282x(08)70651-218685743
  • BrunckoM. Dihydropyridine-based calcium channel blockers for the treatment of angina pectoris and hypertension. In: Bioactive Heterocyclic Compound Classes. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2013:135–151. doi:10.1002/9783527664450.ch9
  • IshiiN, MatsumuraT, ShimodaS, ArakiE. Anti-atherosclerotic potential of dihydropyridine calcium channel blockers. J Atheroscler Thromb. 2012;19(8):693–704. doi:10.5551/jat.1245022653165
  • MishraAP, BajpaiA, RaiAK. 1,4-dihydropyridine: a dependable heterocyclic ring with the promising and the most anticipable therapeutic effects. Mini Rev Med Chem. 2019;19(15):1219–1254. doi:10.2174/138955751966619042518474931735158
  • KhedkarSA, AutiPB. 1, 4-Dihydropyridines: a class of pharmacologically important molecules. Mini Rev Med Chem. 2014;14(3):282–290. doi:10.2174/138955751366613111920412624251802
  • EdrakiN, MehdipourAR, KhoshneviszadehM, MiriR. Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov Today. 2009;14(21–22):1058–1066. doi:10.1016/j.drudis.2009.08.00419729074
  • VitakuE, SmithDT, NjardarsonJT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014;57(24):10257–10274. doi:10.1021/jm501100b25255204
  • PenningtonLD, MoustakasDT. The necessary nitrogen atom: a versatile high-impact design element for multiparameter optimization. J Med Chem. 2017;60(9):3552–3579. doi:10.1021/acs.jmedchem.6b0180728177632
  • VanottiE, AmiciR, BargiottiA, et al. Cdc7 kinase inhibitors: pyrrolopyridinones as potential antitumor agents. 1. Synthesis and structure–activity relationships. J Med Chem. 2008;51(3):487–501. doi:10.1021/jm700956r18201066
  • ZhengX, BauerP, BaumeisterT, et al. Structure-based identification of ureas as novel nicotinamide phosphoribosyltransferase (Nampt) inhibitors. J Med Chem. 2013;56(12):4921–4937. doi:10.1021/jm400186h23617784
  • HongSP, LiuKG, MaG, et al. Tricyclic thiazolopyrazole derivatives as metabotropic glutamate receptor 4 positive allosteric modulators. J Med Chem. 2011;54(14):5070–5081. doi:10.1021/jm200290z21688779
  • HuangH, DegnanAP, BalakrishnanA, et al. Oxazolidinone-based allosteric modulators of mGluR5: defining molecular switches to create a pharmacological tool box. Bioorg Med Chem Lett. 2016;26(17):4165–4169. doi:10.1016/j.bmcl.2016.07.06527496211
  • CastellanP, MarchioniM, CastellucciR, et al. Abiraterone acetate for early stage metastatic prostate cancer: patient selection and special considerations. Ther Clin Risk Manag. 2018;14:2341–2347. doi:10.2147/TCRM.S15982430584309
  • BascoL, GillotinC, GimenezF, FarinottiR, BrasJ. In vitro activity of the enantiomers of mefloquine, halofantrine and enpiroline against Plasmodium falciparum. Br J Clin Pharmacol. 1992;33(5):517–520. doi:10.1111/j.1365-2125.1992.tb04081.x1524966
  • RaghuramuluN, SrikantiaS, RaoB, GopalanC. Nicotinamide nucleotides in the erythrocytes of patients suffering from pellagra. Biochem J. 1965;96(3):837–839. doi:10.1042/bj09608374285896
  • WestlakeEK, CampbellEJM. Effects of aminophylline, nikethamide, and sodium salicylate in respiratory failure. BMJ. 1959;1(5117):274–276. doi:10.1136/bmj.1.5117.27413618616
  • ListerBJ, PolandM, DeLappRE. Efficacy of nabumetone versus diclofenac, naproxen, ibuprofen, and piroxicam in osteoarthritis and rheumatoid arthritis. Am J Med. 1993;95(2):S2–S9. doi:10.1016/0002-9343(93)90390-B
  • HsuKHK. Thirty years after isoniazid. JAMA. 1984;251(10):1283. doi:10.1001/jama.1984.033403400230186366257
  • AndersenJB, EngelandA, OweJF, GilhusNE. Myasthenia gravis requiring pyridostigmine treatment in a national population cohort. Eur J Neurol. 2010;17(12):1445–1450. doi:10.1111/j.1468-1331.2010.03089.x20491896
  • BostockC, McDonaldC. Antimuscarinics in older people: dry mouth and beyond. Dent Update. 2016;43(2):186–191. doi:10.12968/denu.2016.43.2.18627188134
  • FriedmanH, GreenblattDJ, ScavoneJM, et al. Clearance of the antihistamine doxylamine. Clin Pharmacokinet. 1989;16(5):312–316. doi:10.2165/00003088-198916050-000032743704
  • WalanA, BaderJP, ClassenM, et al. Effect of omeprazole and ranitidine on ulcer healing and relapse rates in patients with benign gastric ulcer. N Engl J Med. 1989;320(2):69–75. doi:10.1056/NEJM1989011232002012643037
  • WangZ, VinceR. Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase: introducing a diketoacid functionality into delavirdine. Bioorg Med Chem. 2008;16(7):3587–3595. doi:10.1016/j.bmc.2008.02.00718314335
  • Te VelthuisAJW, ZubkovaTG, ShawM, et al. Enisamium reduces influenza virus shedding and improves patient recovery by inhibiting viral RNA polymerase activity. Antimicrob Agents Chemother. 2021;65(4). doi:10.1128/AAC.02605-20
  • AhmedM, RochaJBT, CorrêaM, et al. Inhibition of two different cholinesterases by tacrine. Chem Biol Interact. 2006;162(2):165–171. doi:10.1016/j.cbi.2006.06.00216860785
  • ToalCB, MeredithPA, ElliottHL. Long-acting dihydropyridine calcium-channel blockers and sympathetic nervous system activity in hypertension: a literature review comparing amlodipine and nifedipine GITS. Blood Press. 2012;21(Suppl 1):3–10. doi:10.3109/08037051.2012.690615
  • WangJG, KarioK, LauT, et al. Use of dihydropyridine calcium channel blockers in the management of hypertension in Eastern Asians: a scientific statement from the Asian Pacific Heart Association. Hypertens Res. 2011;34(4):423–430. doi:10.1038/hr.2010.25921228778
  • YetL. 1,4-dihydropyridines. In: Privileged Structures in Drug Discovery. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2018:59–82. doi:10.1002/9781118686263.ch3
  • VaastP, Dubreucq-FossaertS, Houfflin-DebargeV, et al. Acute pulmonary oedema during nicardipine therapy for premature labour. Eur J Obstet Gynecol Reprod Biol. 2004;113(1):98–99. doi:10.1016/j.ejogrb.2003.05.00415036720
  • AlousiAA, JohnsonDC. Pharmacology of the bipyridines: amrinone and milrinone. Circulation. 1986;73(3 Pt 2):III10–III24.2417744
  • LeoniA, FrosiniM, LocatelliA, et al. 4-Imidazo[2,1-b]thiazole-1,4-DHPs and neuroprotection: preliminary study in hits searching. Eur J Med Chem. 2019;169:89–102. doi:10.1016/j.ejmech.2019.02.07530861492
  • de Los RíosC, Marco-ContellesJ. Tacrines for Alzheimer’s disease therapy. III. The PyridoTacrines. Eur J Med Chem. 2019;166:381–389. doi:10.1016/j.ejmech.2019.02.00530739821
  • XuD, SunD, WangW, et al. Discovery of pyrrolo[2,3-d]pyrimidine derivatives as potent Axl inhibitors: design, synthesis and biological evaluation. Eur J Med Chem. 2021;220:113497. doi:10.1016/j.ejmech.2021.11349733957388
  • JianY, HulpiaF, RisseeuwMDP, et al. Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents. Eur J Med Chem. 2020;201:112450. doi:10.1016/j.ejmech.2020.11245032623208
  • ZhangY, PavlovaOA, CheferSI, et al. 5-substituted derivatives of 6-halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with low picomolar affinity for α4β2 nicotinic acetylcholine receptor and wide range of lipophilicity: potential probe. J Med Chem. 2004;47(10):2453–2465. doi:10.1021/jm030432v15115389
  • YangG-Z, ShangX-F, ChengP-L, et al. Facile three-component synthesis, insecticidal and antifungal evaluation of novel dihydropyridine derivatives. Molecules. 2018;23(10):2422. doi:10.3390/molecules23102422
  • AbdelriheemN, AhmadS, AbdelhamidA. Synthesis of some new Thieno[2,3-b]pyridines, Pyrimidino[4ʹ,5ʹ:4,5]thieno[2,3-b]pyridine and pyridines incorporating 5-bromobenzofuran-2-yl moiety. Molecules. 2015;20(1):822–838. doi:10.3390/molecules2001082225574823
  • GilhusNE, VerschuurenJJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–1036. doi:10.1016/S1474-4422(15)00145-326376969
  • BugajskiJ, GłódR, Gadek-MichalskaA, BugajskiAJ. Involvement of constitutive (COX-1) and inducible cyclooxygenase (COX-2) in the adrenergic-induced ACTH and corticosterone secretion. J Physiol Pharmacol. 2001;52(4 Pt 2):795–809.11785774
  • CartyTJ, MarfatA, MoorePF, FalknerFC, TwomeyTM, WeissmanA. Ampiroxicam, an anti-inflammatory agent which is a prodrug of piroxicam. Agents Actions. 1993;39(3–4):157–165. doi:10.1007/BF019989698304243
  • KothekarV, SahiS, SrinivasanM, MohanA, MishraJ. Recognition of cyclooxygenase-2 (COX-2) active site by NSAIDs: a computer modelling study. Indian J Biochem Biophys. 2001;38(1–2):56–63.11563332
  • EsteveJ, FarréAJ, RoserR. Pharmacological profile of droxicam. Gen Pharmacol. 1988;19(1):49–54. doi:10.1016/0306-3623(88)90004-33278945
  • BergJ, FellierH, ChristophT, GrarupJ, StimmederD. The analgesic NSAID lornoxicam inhibits cyclooxygenase (COX)-1/-2, inducible nitric oxide synthase (iNOS), and the formation of interleukin (IL)-6 in vitro. Inflamm Res. 1999;48(7):369–379. doi:10.1007/s00011005047410450786
  • FinchJS, DeKornfeldTJ. Clonixin: a clinical evaluation of a new oral analgesic. J Clin Pharmacol New Drugs. 1971;11(5):371–377.4935715
  • CaponeML, TacconelliS, Di FrancescoL, SacchettiA, SciulliMG, PatrignaniP. Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins Other Lipid Mediat. 2007;82(1–4):85–94. doi:10.1016/j.prostaglandins.2006.05.01917164136
  • SigelE, SteinmannME. Structure, function, and modulation of GABAA receptors. J Biol Chem. 2012;287(48):40224–40231. doi:10.1074/jbc.R112.38666423038269
  • DulfanoMJ. Nikethamide as a respiratory analeptic. JAMA. 1963;185(2):69. doi:10.1001/jama.1963.03060020029016
  • PymAS, DomenechP, HonoreN, SongJ, DereticV, ColeST. Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol Microbiol. 2001;40(4):879–889. doi:10.1046/j.1365-2958.2001.02427.x11401695
  • ArmstrongS, MerrillAR. Toward the elucidation of the catalytic mechanism of the Mono-ADP-Ribosyltransferase activity of Pseudomonas aeruginosa Exotoxin A †. Biochemistry. 2004;43(1):183–194. doi:10.1021/bi034772u14705944
  • VogiatziP, ClaudioPP. Efficacy of Abiraterone acetate in post-docetaxel castration-resistant prostate cancer. Expert Rev Anticancer Ther. 2010;10(7):1027–1030. doi:10.1586/era.10.8420645691
  • QizilbashN, WhiteheadA, HigginsJ, et al. Cholinesterase inhibition for Alzheimer disease. JAMA. 1998;280(20):1777. doi:10.1001/jama.280.20.17779842955
  • FreimuthWW. Delavirdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor. Adv Exp Med Biol. 1996;394:279–289. doi:10.1007/978-1-4757-9209-6_258815692
  • YangYX, LewisJD, EpsteinS, MetzDC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296(24):2947–2953. doi:10.1001/jama.296.24.294717190895
  • KukovetzWR, HolzmannS, PöchG. Molecular mechanism of action of nicorandil. J Cardiovasc Pharmacol. 1992;20(Suppl 3):S1–S7. doi:10.1097/00005344-199206203-00002
  • OveringtonJP, Al-LazikaniB, HopkinsAL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996. doi:10.1038/nrd219917139284
  • SuterDM, Preynat-SeauveO, TirefortD, FekiA, KrauseK-H. Phenazopyridine induces and synchronizes neuronal differentiation of embryonic stem cells. J Cell Mol Med. 2009;13(9B):3517–3527. doi:10.1111/j.1582-4934.2009.00660.x20196783
  • VuoriML, KailaT, IisaloE, SaariKM. Systemic absorption and anticholinergic activity of topically applied tropicamide. J Ocul Pharmacol. 1994;10(2):431–437. doi:10.1089/jop.1994.10.4318083562
  • HarveyJL, PaineAJ, MaurelP, WrightMC. Effect of the adrenal 11-beta-hydroxylase inhibitor metyrapone on human hepatic cytochrome P-450 expression: induction of cytochrome P-450 3A4. Drug Metab Dispos. 2000;28(1):96–101.10611146
  • LittleJT, WalshS, AisenPS. An update on huperzine A as a treatment for Alzheimer’s disease. Expert Opin Investig Drugs. 2008;17(2):209–215. doi:10.1517/13543784.17.2.209
  • NadaT, NomuraM, KoshibaK, KawanoT, MikawaJ, ItoS. Clinical study with azelnidipine in patients with essential hypertension. Antiarteriosclerotic and cardiac hypertrophy-inhibitory effects and influence on autonomic nervous activity. Arzneimittelforschung. 2007;57(11):698–704. doi:10.1055/s-0031-129667018193691
  • MinamiJ, NumabeA, AndohN, et al. Comparison of once-daily nifedipine controlled-release with twice-daily nifedipine retard in the treatment of essential hypertension. Br J Clin Pharmacol. 2004;57(5):632–639. doi:10.1111/j.1365-2125.2003.02056.x15089817
  • RosenthalJ. Nilvadipine: profile of a new calcium antagonist. An overview. J Cardiovasc Pharmacol. 1994;24(Suppl 2):S92–S107. doi:10.1097/00005344-199412001-000147898101
  • DongCJ, GuoY, AgeyP, WheelerL, HareWA. Nimodipine enhancement of α2 adrenergic modulation of NMDA receptor via a mechanism independent of Ca2+ channel blocking. Invest Ophthalmol Vis Sci. 2010;51(8):4174–4180. doi:10.1167/iovs.09-461320335610
  • JohnsonR, DludlaP, MabhidaS, BenjeddouM, LouwJ, FebruaryF. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev. 2019;24(3):343–357. doi:10.1007/s10741-018-09765-y30645721
  • FletcherH, RobertsG, MullingsA, ForresterT. An open trial comparing isradipine with hydralazine and methyl dopa in the treatment of patients with severe pre-eclampsia. J Obstet Gynaecol. 1999;19(3):235–238. doi:10.1080/0144361996497715512286
  • ThayerSA, WelcomeM, ChhabraA, FairhurstAS. Effects of dihydropyridine calcium channel blocking drugs on rat brain muscarinic and alpha-adrenergic receptors. Biochem Pharmacol. 1985;34(2):175–180. doi:10.1016/0006-2952(85)90121-22981533
  • MalhotraHS, PloskerGL. Barnidipine. Drugs. 2001;61(7):989–996. doi:10.2165/00003495-200161070-0000711434453
  • MielcarekJ, GrobelnyP, SzamburskaO. The effect of beta-carotene on the photostability of nisoldipine. Methods Find Exp Clin Pharmacol. 2005;27(3):167–171. doi:10.1358/mf.2005.27.3.89087315834448
  • RegullaS, SchneiderT, NastainczykW, MeyerHE, HofmannF. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel alpha 1 subunit. EMBO J. 1991;10(1):45–49. doi:10.1002/j.1460-2075.1991.tb07919.x1846597
  • ZhangJG, DehalSS, HoT, et al. Human cytochrome p450 induction and inhibition potential of clevidipine and its primary metabolite h152/81. Drug Metab Dispos. 2006;34(5):734–737. doi:10.1124/dmd.105.00656916501008
  • LiuZ, ZhengX, YangX, WangE, WangJ. Affinity and specificity of levamlodipine-human serum albumin interactions: insights into its carrier function. Biophys J. 2009;96(10):3917–3925. doi:10.1016/j.bpj.2008.12.396519450464
  • TanakaH, ShigenobuK. Efonidipine hydrochloride: a dual blocker of L- and T-type ca(2+) channels. Cardiovasc Drug Rev. 2002;20(1):81–92. doi:10.1111/j.1527-3466.2002.tb00084.x12070536
  • NiewerthM, KunzeD, SeiboldM, SchallerM, KortingHC, HubeB. Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob Agents Chemother. 2003;47(6):1805–1817. doi:10.1128/AAC.47.6.1805-1817.200312760852
  • ShipleyJB, TolmanD, HastilloA, HessML. Milrinone: basic and clinical pharmacology and acute and chronic management. Am J Med Sci. 1996;311(6):286–291. doi:10.1097/00000441-199606000-000118659556
  • KobayashiT, SugawaraY, OhkuboT, ImamuraH, MakuuchiM. Effects of amrinone on hepatic ischemia-reperfusion injury in rats. J Hepatol. 2002;37(1):31–38. doi:10.1016/s0168-8278(02)00084-312076859
  • LópezB, GonzálezA, HermidaN, LaviadesC, DíezJ. Myocardial fibrosis in chronic kidney disease: potential benefits of torasemide. Kidney Int Suppl. 2008;74(111):S19–S23. doi:10.1038/ki.2008.512
  • MorganRE, CampbellSE, YuCY, SponsellerCA, MusterHA. Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012;60(1):42–48. doi:10.1097/FJC.0b013e318256cdf022472908
  • SteedME, RybakMJ. Ceftaroline: a new cephalosporin with activity against resistant gram-positive pathogens. Pharmacotherapy. 2010;30(4):375–389. doi:10.1592/phco.30.4.37520334458
  • RogerC, RobertsJA, MullerL. Clinical pharmacokinetics and pharmacodynamics of oxazolidinones. Clin Pharmacokinet. 2018;57(5):559–575. doi:10.1007/s40262-017-0601-x29063519
  • RichardsDM, BrogdenRN. Ceftazidime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1985;29(2):105–161. doi:10.2165/00003495-198529020-000023884319
  • MarkhamA. Delafloxacin: first global approval. Drugs. 2017;77(13):1481–1486. doi:10.1007/s40265-017-0790-528748399
  • MorlockGP, MetchockB, SikesD, CrawfordJT, CookseyRC. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2003;47(12):3799–3805. doi:10.1128/AAC.47.12.3799-3805.200314638486
  • AmbroseZ, HermanBD, SheenC-W, et al. The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs. J Virol. 2009;83(8):3826–3833. doi:10.1128/JVI.01968-0819193782
  • WilbyKJ, EissaNA. Clinical pharmacokinetics and drug interactions of doravirine. Eur J Drug Metab Pharmacokinet. 2018;43(6):637–644. doi:10.1007/s13318-018-0497-330047107
  • WittayanarakulK, HannongbuaS, FeigM. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. J Comput Chem. 2008;29(5):673–685. doi:10.1002/jcc.2082117849388
  • CohenEE, RosenLS, VokesEE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26(29):4708–4713. doi:10.1200/JCO.2007.15.956618541897
  • DeiningerMWN, DrukerBJ. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev. 2003;55(3):401–423. doi:10.1124/pr.55.3.412869662
  • FlahertyKT. Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res. 2006;12(7):2366s–2370s. doi:10.1158/1078-0432.CCR-05-250516609060
  • HottaK, UeyamaJ, TatsumiY, et al. Lack of contribution of multidrug resistance-associated protein and organic anion-transporting polypeptide to pharmacokinetics of regorafenib, a novel multi-kinase inhibitor, in rats. Anticancer Res. 2015;35(9):4681–4689.26254357
  • GiustiniN, BernthalNM, BukataSV, SinghAS. Tenosynovial giant cell tumor: case report of a patient effectively treated with pexidartinib (PLX3397) and review of the literature. Clin Sarcoma Res. 2018;8:14. doi:10.1186/s13569-018-0101-230002809
  • KonstantinopoulosPA, BarryWT, BirrerM, et al. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncol. 2019;20(4):570–580. doi:10.1016/S1470-2045(18)30905-730880072
  • ShawAT, FelipE, BauerTM, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18(12):1590–1599. doi:10.1016/S1470-2045(17)30680-029074098
  • WuJ, ZhangM, LiuD. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol. 2016;9:21. doi:10.1186/s13045-016-0250-926957112
  • GelbertLM, CaiS, LinX, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs. 2014;32(5):825–837. doi:10.1007/s10637-014-0120-724919854
  • BursteinHJ, SunY, DirixLY, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol. 2010;28(8):1301–1307. doi:10.1200/JCO.2009.25.870720142587
  • MondesirJ, WillekensC, TouatM, de BottonS. IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J Blood Med. 2016;7:171–180. doi:10.2147/JBM.S7071627621679
  • ShoreSN, BritnellSR, BrownJN. Safety analysis of long-term phenazopyridine use for radiation cystitis. J Oncol Pharm Pract. 2020;26(2):306–311. doi:10.1177/107815521984264631006341
  • MurdinL, HussainK, SchilderAGM. Betahistine for symptoms of vertigo. Cochrane Database Syst Rev. 2016;(6):CD010696. doi:10.1002/14651858.CD010696.pub227327415
  • ChenX, JiZL, ChenYZ. TTD: therapeutic target database. Nucleic Acids Res. 2002;30(1):412–415. doi:10.1093/nar/30.1.41211752352
  • LindquistS, StangelM. Update on treatment options for Lambert-Eaton myasthenic syndrome: focus on use of amifampridine. Neuropsychiatr Dis Treat. 2011;7:341–349. doi:10.2147/NDT.S1046421822385
  • AllenGS, AhnHS, PreziosiTJ, et al. Cerebral arterial spasm–a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med. 1983;308(11):619–624. doi:10.1056/NEJM1983031730811036338383
  • TagawaM, KanoM, OkamuraN, et al. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. Br J Clin Pharmacol. 2001;52(5):501–509. doi:10.1046/j.1365-2125.2001.01471.x11736858
  • WebbonPM, WoolliscroftGJ. Cautious use of flunixin advocated. Vet Rec. 1984;115(2):45. doi:10.1136/vr.115.2.45-b
  • SangY, BarbosaJM, WuH, LocyRD, SinghNK. Identification of a pyridoxine (pyridoxamine) 5ʹ-phosphate oxidase from Arabidopsis thaliana. FEBS Lett. 2007;581(3):344–348. doi:10.1016/j.febslet.2006.12.02817224143
  • BellJ. Amlexanox for the treatment of recurrent aphthous ulcers. Clin Drug Investig. 2005;25(9):555–566. doi:10.2165/00044011-200525090-00001
  • WilhelmS, CarterC, LynchM, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5(10):835–844. doi:10.1038/nrd213017016424
  • OliveiraEF, CerqueiraNM, FernandesPA, RamosMJ. Mechanism of formation of the internal aldimine in pyridoxal 5-phosphate-dependent enzymes. J Am Chem Soc. 2011;133(39):15496–15505. doi:10.1021/ja204229m21854048
  • RamadanAA, MandilH. Spectrophotometric determination of carbinoxamine maleate in pharmaceutical formulations by ternary complex formation with Cu(II) and eosin. Anal Biochem. 2006;353(1):133–137. doi:10.1016/j.ab.2006.02.02016574052
  • DringAM, AndersonLE, QamarS, StonerMA. Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands. Chem Biol Interact. 2010;188(3):512–525. doi:10.1016/j.cbi.2010.09.01820869355
  • BökesoyTA, OnaranHO. Atypical Schild plots with histamine H1 receptor agonists and antagonists in the rabbit aorta. Eur J Pharmacol. 1991;197(1):49–56. doi:10.1016/0014-2999(91)90363-u1680053
  • MatsumotoK, OkamotoK, AshizawaN, NishinoT. FYX-051: a novel and potent hybrid-type inhibitor of xanthine oxidoreductase. J Pharmacol Exp Ther. 2011;336(1):95–103. doi:10.1124/jpet.110.17454020952484
  • RoskosKV, BircherAJ, MaibachHI, GuyRH. Pharmacodynamic measurements of methyl nicotinate percutaneous absorption: the effect of aging on microcirculation. Br J Dermatol. 1990;122(2):165–171. doi:10.1111/j.1365-2133.1990.tb08262.x2317445
  • KamannaVS, KashyapML. Mechanism of action of niacin. Am J Cardiol. 2008;101(8):S20–S26. doi:10.1016/j.amjcard.2008.02.029
  • ReederNL, KaplanJ, XuJ, et al. Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob Agents Chemother. 2011;55(12):5753–5760. doi:10.1128/AAC.00724-1121947398
  • JacksonKJ, MarksMJ, VannRE, et al. Role of α5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J Pharmacol Exp Ther. 2010;334(1):137–146. doi:10.1124/jpet.110.16573820400469
  • VormfeldeSV, SehrtD, ToliatMR, et al. Genetic variation in the renal sodium transporters NKCC2, NCC, and ENaC in relation to the effects of loop diuretic drugs. Clin Pharmacol Ther. 2007;82(3):300–309. doi:10.1038/sj.clpt.610013117460608
  • WuRL, AnthesJC, KreutnerW, HarrisAG, WestRE. Desloratadine inhibits constitutive and histamine-stimulated Nuclear Factor-κB activity consistent with inverse agonism at the histamine H1 receptor. Int Arch Allergy Immunol. 2004;135(4):313–318. doi:10.1159/00008232515564772
  • AllinsonRW, GerberDS, BieberS, HodesBL. Reversal of mydriasis by dapiprazole. Ann Ophthalmol. 1990;22(4):131–133.1972008
  • TanKR, RudolphU, LüscherC. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 2011;34(4):188–197. doi:10.1016/j.tins.2011.01.00421353710
  • OgiharaT, KanoT, KakinumaC. Evaluation of the inhibitory effect of dihydropyridines on N-type calcium channel by virtual three-dimensional pharmacophore modeling. Arzneimittelforschung. 2011;59(06):283–288. doi:10.1055/s-0031-1296398
  • ClaroE, ArbonésL, GarcíaA, PicatosteF. Phosphoinositide hydrolysis mediated by histamine H1-receptors in rat brain cortex. Eur J Pharmacol. 1986;123(2):187–196. doi:10.1016/0014-2999(86)90659-X3011460
  • KarlgrenM, VildhedeA, NorinderU, et al. classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug–drug interactions. J Med Chem. 2012;55(10):4740–4763. doi:10.1021/jm300212s22541068
  • BroadhurstCL, DomenicoP. Clinical studies on chromium picolinate supplementation in Diabetes Mellitus—a review. Diabetes Technol Ther. 2006;8(6):677–687. doi:10.1089/dia.2006.8.67717109600
  • HuaY, ClarkS, RenJ, SreejayanN. Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem. 2012;23(4):313–319. doi:10.1016/j.jnutbio.2011.11.00122423897
  • NegroA, MartellettiP. Gepants for the treatment of migraine. Expert Opin Investig Drugs. 2019;28(6):555–567. doi:10.1080/13543784.2019.1618830
  • MonteseirinJ, ChaconP, VegaA, et al. L-selectin expression on neutrophils from allergic patients. Clin Exp Allergy. 2005;35(9):1204–1213. doi:10.1111/j.1365-2222.2005.02320.x16164449
  • JordanEJ, KellyCM. Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012;13(17):2533–2543. doi:10.1517/14656566.2012.73778023094782
  • DummerR, UrosevicM, KempfW, HoekK, HafnerJ, BurgG. Imiquimod in basal cell carcinoma: how does it work? Br J Dermatol. 2003;149(s66):57–58. doi:10.1046/j.0366-077X.2003.05630.x14616353
  • BébéarCM, GrauO, CharronA, RenaudinH, GrusonD, BébéarC. Cloning and nucleotide sequence of the DNA gyrase (gyrA) gene from Mycoplasma hominis and characterization of quinolone-resistant mutants selected in vitro with trovafloxacin. Antimicrob Agents Chemother. 2000;44(10):2719–2727. doi:10.1128/AAC.44.10.2719-2727.200010991851
  • GootzTD, ZaniewskiRP, HaskellSL, KaczmarekFS, MauriceAE. Activities of trovafloxacin compared with those of other fluoroquinolones against purified topoisomerases and gyrA and grlA mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1999;43(8):1845–1855. doi:10.1128/AAC.43.8.184510428901
  • BortolinM, BidossiA, De VecchiE, AvvenienteM, DragoL. In vitro antimicrobial activity of chlorquinaldol against microorganisms responsible for skin and soft tissue infections: comparative evaluation with gentamicin and fusidic acid. Front Microbiol. 2017;8. doi:10.3389/fmicb.2017.01039.
  • AndersenA. Final amended report on the safety assessment of oxyquinoline and oxyquinoline sulfate as used in cosmetics1. Int J Toxicol. 2006;25(1_suppl):1–9. doi:10.1080/10915810600716570
  • MerlosM, GiralM, BalsaD, et al. Rupatadine, a new potent, orally active dual antagonist of histamine and platelet-activating factor (PAF). J Pharmacol Exp Ther. 1997;280(1):114–121.8996188
  • AsraniCH, DamleSS, GhotgeVV, et al. Efficacy and safety of metronidazole versus a combination of metronidazole and diiodohydroxyquinoline for the treatment of patients with intestinal amebiasis: a primary care physician research group study. Curr Ther Res. 1995;56(7):678–683. doi:10.1016/0011-393X(95)85137-2
  • WeberM, BreierM, KoD, ThangarajN, MarzanDE, SwerdlowNR. Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology. 2009;203(4):723–735. doi:10.1007/s00213-008-1419-x19066855
  • BelenkyP, BoganKL, BrennerC. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–19. doi:10.1016/j.tibs.2006.11.00617161604
  • SlaterAFG, CeramiA. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature. 1992;355(6356):167–169. doi:10.1038/355167a01729651
  • KruegerD, DemirIE, CeyhanGO, ZellerF, SchemannM. bis-(p-hydroxyphenyl)-pyridyl-2-methane (BHPM)-The active metabolite of the laxatives bisacodyl and sodium picosulfate-enhances contractility and secretion in human intestine in vitro. Neurogastroenterol Motil. 2018;30(7):e13311. doi:10.1111/nmo.1331129441646
  • WongDF, RosenbergPB, ZhouY, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18 F-AV-45 (Flobetapir F 18). J Nucl Med. 2010;51(6):913–920. doi:10.2967/jnumed.109.06908820501908
  • FitchCD, FerriprotoporphyrinIX. phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 2004;74(16):1957–1972. doi:10.1016/j.lfs.2003.10.00314967191
  • SheetsMF, FozzardHA, LipkindGM, HanckDA. Sodium channel molecular conformations and antiarrhythmic drug affinity. Trends Cardiovasc Med. 2010;20(1):16–21. doi:10.1016/j.tcm.2010.03.00220685573
  • MannKV, CroweJP, TietzeKJ. Nonsedating histamine H1-receptor antagonists. Clin Pharm. 1989;8(5):331–344.2568212
  • NalineE, TrifilieffA, FairhurstRA, AdvenierC, MolimardM. Effect of indacaterol, a novel long-acting 2-agonist, on isolated human bronchi. Eur Respir J. 2007;29(3):575–581. doi:10.1183/09031936.0003280617135231
  • MahoneyCE, MochizukiT, ScammellTE. Dual orexin receptor antagonists increase sleep and cataplexy in wild type mice. Sleep. 2020;43(6). doi:10.1093/sleep/zsz302
  • CairnsP, SrivastavaS, GrizzleWE. Renal cell carcinoma. Cancer Biomark. 2011;9(1–6):461–473. doi:10.3233/CBM-2011-0176
  • ShinJJ, SaadabadiA. Trazodone; 2021.
  • SimonsFE, SimonsKJ. Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol. 2011;128(6):1139–1150.e4. doi:10.1016/j.jaci.2011.09.00522035879
  • AndrewsCD, HeneineW. Cabotegravir long-acting for HIV-1 prevention. Curr Opin HIV AIDS. 2015;10(4):258–263. doi:10.1097/COH.000000000000016126049951
  • FarrellDJ, ShackclothJ, BarbadoraKA, GreenMD. Streptococcus pyogenes isolates with high-level macrolide resistance and reduced susceptibility to telithromycin associated with 23S rRNA mutations. Antimicrob Agents Chemother. 2006;50(2):817–818. doi:10.1128/AAC.50.2.817-818.200616436755
  • DündarY, DoddS, StroblJ, BolandA, DicksonR, WalleyT. Comparative efficacy of newer hypnotic drugs for the short-term management of insomnia: a systematic review and meta-analysis. Hum Psychopharmacol Clin Exp. 2004;19(5):305–322. doi:10.1002/hup.594
  • RucinsM, KaldreD, PajusteK, et al. Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives. Comptes Rendus Chim. 2014;17(1):69–80. doi:10.1016/j.crci.2013.07.003
  • PeriR, PadmanabhanS, RutledgeA, SinghS, TriggleDJ. Permanently charged chiral 1,4-dihydropyridines: molecular probes of L-type calcium channels. Synthesis and pharmacological characterization of methyl (ω-trimethylalkylammonium) 1,4-dihydro-2,6-dimethyl-4-(3- nitrophenyl)-3,5-pyridinedicarboxylate iodide. J Med Chem. 2000;43(15):2906–2914. doi:10.1021/jm000028l10956198
  • BaindurN, RutledgeA, TriggleDJ. A homologous series of permanently charged 1,4-dihydropyridines: novel probes designed to localize drug binding sites on ion channels. J Med Chem. 1993;36(23):3743–3745. doi:10.1021/jm00075a0348246246
  • FuQ, SanbeH, KagawaC, KunimotoKK, HaginakaJ. Uniformly sized molecularly imprinted polymer for (S)-nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein. Anal Chem. 2003;75(2):191–198. doi:10.1021/ac026039z12553751
  • ZhouK, WangXM, ZhaoYZ, CaoYX, FuQ, ZhangSQ. Synthesis and antihypertensive activity evaluation in spontaneously hypertensive rats of nitrendipine analogues. Med Chem Res. 2011;20(8):1325–1330. doi:10.1007/s00044-010-9477-0
  • ZarghiA, SadeghiH, FassihiA, FaiziM, ShafieeA. Synthesis and calcium antagonist activity of 1,4-dihydropyridines containing phenylaminoimidazolyl substituents. Farmaco. 2003;58(11):1077–1081. doi:10.1016/S0014-827X(03)00159-914572858
  • KumarRS, IdhayadhullaA, Abdul NasserAJ, SelvinJ. Synthesis and anticoagulant activity of a new series of 1,4-dihydropyridine derivatives. Eur J Med Chem. 2011;46(2):804–810. doi:10.1016/j.ejmech.2010.12.00621220179
  • MooradianAD. Dyslipidemia in type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(3):150–159. doi:10.1038/ncpendmet1066
  • Abu FarhaR, BustanjiY, Al-HiariY, Al-QirimT, Abu ShiekhaG, AlbashitiR. Lipid lowering activity of novel N -(benzoylphenyl)pyridine-3-carboxamide derivatives in Triton WR-1339-induced hyperlipidemic rats. J Enzyme Inhib Med Chem. 2016;31(sup4):138–144. doi:10.1080/14756366.2016.122258127558168
  • KumarA, MauryaRA, SharmaS, KumarM, BhatiaG. Synthesis and biological evaluation of N-aryl-1,4-dihydropyridines as novel antidyslipidemic and antioxidant agents. Eur J Med Chem. 2010;45(2):501–509. doi:10.1016/j.ejmech.2009.10.03619962217
  • JoYW, ImWB, RheeJK, ShimMJ, KimWB, ChoiEC. Synthesis and antibacterial activity of oxazolidinones containing pyridine substituted with heteroaromatic ring. Bioorganic Med Chem. 2004;12(22):5909–5915. doi:10.1016/j.bmc.2004.08.025
  • ReenGK, KumarA, SharmaP. In vitro and in silico evaluation of 2-(substituted phenyl) oxazolo[4,5-b]pyridine derivatives as potential antibacterial agents. Med Chem Res. 2017;26(12):3336–3344. doi:10.1007/s00044-017-2026-3
  • SalemMS, AliMAM. Novel pyrazolo[3,4-b]pyridine derivatives: synthesis, characterization, antimicrobial and antiproliferative profile. Biol Pharm Bull. 2016;39(4):473–483. doi:10.1248/bpb.b15-0058627040621
  • KhidreRE, RadiniIAM. Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents. Sci Rep. 2021;11(1). doi:10.1038/s41598-021-86424-7
  • LakSS, SouldoziA, TalebiR. Synthesis and evaluation of antibacterial activity of 1,3,4-oxadiazoles derivatives containing pyridine ring. J Chem Pharm Res. 2017;9(2):141–146.
  • PrachayasittikulS, TreeratanapiboonL, RuchirawatS, PrachayasittikulV. Novel activities of 1-adamantylthiopyridines as antibacterials, antimalarials and anticancers. EXCLI J. 2009;8. doi:10.17877/DE290R-641
  • SunN-B, FuJ-Q, WengJ-Q, JinJ-Z, TanC-X, LiuX-H. Microwave assisted synthesis, antifungal activity and DFT theoretical study of some novel 1,2,4-triazole derivatives containing the 1,2,3-thiadiazole moiety. Molecules. 2013;18(10):12725–12739. doi:10.3390/molecules18101272524132196
  • MuJX, ShiYX, WuHK, et al. Microwave assisted synthesis, antifungal activity, DFT and SAR study of 1,2,4-triazolo[4,3-a]pyridine derivatives containing hydrazone moieties. Chem Cent J. 2016;10(1):50. doi:10.1186/s13065-016-0196-627493683
  • WeiLJ, TanWQ, ZhangJJ, et al. Synthesis, characterization, and antifungal activity of Schiff bases of inulin bearing pyridine ring. Polymers (Basel). 2019;11(2):371. doi:10.3390/polym11020371
  • JiaRX, DuanYF, FangQ, WangXY, HuangJY. Pyridine-grafted chitosan derivative as an antifungal agent. Food Chem. 2016;196:381–387. doi:10.1016/j.foodchem.2015.09.05326593505
  • TanW, LiQ, GaoZ, QiuS, DongF, GuoZ. Design, synthesis of novel starch derivative bearing 1,2,3-triazolium and pyridinium and evaluation of its antifungal activity. Carbohydr Polym. 2017;157:236–243. doi:10.1016/j.carbpol.2016.09.09327987923
  • ElshemyHAH, ZakiMA, MohamedEI, KhanSI, LamiePF. A multicomponent reaction to design antimalarial pyridyl-indole derivatives: synthesis, biological activities and molecular docking. Bioorg Chem. 2020;97:103673. doi:10.1016/j.bioorg.2020.10367332106041
  • XueJ, DiaoJS, CaiGB, et al. Antimalarial and structural studies of pyridine-containing inhibitors of 1-deoxyxylulose-5-phosphate reductoisomerase. ACS Med Chem Lett. 2013;4(2):278–282. doi:10.1021/ml300419r23795240
  • SalemMS, SakrSI, El-SenousyWM, MadkourHMF. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch Pharm. 2013;346(10):766–773. doi:10.1002/ardp.201300183
  • El-SayedWA, KhalafHS, MohamedSF, HussienHA, KutkatOM, AmrAE. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ J Gen Chem. 2017;87(10):2444–2453. doi:10.1134/S1070363217100279
  • AsquithCR, BergerBT, WanJ, et al. SGC-GAK-1: a chemical probe for cyclin G associated kinase (GAK). J Med Chem. 2019;62(5):2830–2836. doi:10.1021/acs.jmedchem.8b0121330768268
  • KovackovaS, ChangL, BekermanE, et al. Selective inhibitors of cyclin G associated kinase (GAK) as anti-hepatitis C agents. J Med Chem. 2015;58(8):3393–3410. doi:10.1021/jm501759m25822739
  • PuSY, WoutersR, SchorS, et al. Optimization of isothiazolo[4,3-b]pyridine-based inhibitors of cyclin G associated kinase (GAK) with broad-spectrum antiviral activity. J Med Chem. 2018;61(14):6178–6192. doi:10.1021/acs.jmedchem.8b0061329953812
  • LiJ, KovackovaS, PuS, et al. Isothiazolo[4,3-b]pyridines as inhibitors of cyclin G associated kinase: synthesis, structure–activity relationship studies and antiviral activity. Medchemcomm. 2015;6(9):1666–1672. doi:10.1039/C5MD00229J26925208
  • WoutersR, PuSY, FroeyenM, et al. Cyclin G-associated kinase (GAK) affinity and antiviral activity studies of a series of 3-C-substituted isothiazolo[4,3-b]pyridines. Eur J Med Chem. 2019;163:256–265. doi:10.1016/j.ejmech.2018.11.06530529544
  • Martinez-GualdaB, PuSY, FroeyenM, HerdewijnP, EinavS, De JongheS. Structure-activity relationship study of the pyridine moiety of isothiazolo[4,3-b]pyridines as antiviral agents targeting cyclin G-associated kinase. Bioorg Med Chem. 2020;28(1):115188. doi:10.1016/j.bmc.2019.11518831757682
  • XuS, RouzerCA, MarnettLJ. Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. IUBMB Life. 2014;66(12):803–811. doi:10.1002/iub.133425537198
  • LombardinoJG, LoweJA. The role of the medicinal chemist in drug discovery — then and now. Nat Rev Drug Discov. 2004;3(10):853–862. doi:10.1038/nrd152315459676
  • CroomKF, SiddiquiMAA. Etoricoxib: a review of its use in the symptomatic treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and acute gouty arthritis. Drugs. 2009;69(11):1513–1532. doi:10.2165/00003495-200969110-0000819634927
  • KhanFA, NasimN, WangY, et al. Amphiphilic desmuramyl peptides for the rational design of new vaccine adjuvants: synthesis, in vitro modulation of inflammatory response and molecular docking studies. Eur J Med Chem. 2021;209:112863. doi:10.1016/j.ejmech.2020.11286333032082
  • KhanFA, UlanovaM, BaiB, YalamatiD, JiangZH. Design, synthesis and immunological evaluation of novel amphiphilic desmuramyl peptides. Eur J Med Chem. 2017;141:26–36. doi:10.1016/j.ejmech.2017.09.07029028529
  • ThirumuruganP, MahalaxmiS, PerumalPT. Synthesis and anti-inflammatory activity of 3-indolyl pyridine derivatives through one-pot multi component reaction. J Chem Sci. 2010;122(6):819–832. doi:10.1007/s12039-010-0070-3
  • LiuH, LiY, WangXY, et al. Synthesis, preliminary structure-activity relationships, and in vitro biological evaluation of 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives as potential anti-inflammatory agents. Bioorganic Med Chem Lett. 2013;23(8):2349–2352. doi:10.1016/j.bmcl.2013.02.059
  • YaqoobS, NasimN, KhanamR, et al. Synthesis of highly potent anti-inflammatory compounds (ROS inhibitors) from isonicotinic acid. Molecules. 2021;26(5):1272. doi:10.3390/molecules2605127233652837
  • KuoT, McQueenA, ChenTC, WangJC. Regulation of glucose homeostasis by glucocorticoids. Glucocorticoid Signal. 2015;99–126. DOI:10.1007/978-1-4939-2895-8_5
  • TeraoM, ItoiS, MatsumuraS, YangL, MurotaH, KatayamaI. Local glucocorticoid activation by 11β-hydroxysteroid dehydrogenase 1 in keratinocytes: the role in hapten-induced dermatitis. Am J Pathol. 2016;186(6):1499–1510. doi:10.1016/j.ajpath.2016.01.01427070821
  • PraveenkumarE, GurrapuN, Kumar KolluriP, YerraguntaV, Reddy KunduruB, SubhashiniNJP. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors. Bioorg Chem. 2019;90:103056. doi:10.1016/j.bioorg.2019.10305631276952
  • AdibM, PeytamF, Rahmanian-JaziM, et al. Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J Chem. 2018;42(21):17268–17278. doi:10.1039/C8NJ02495B
  • HartRG, PearceLA, RavinaBM, YalthoTC, MarlerJR. Neuroprotection trials in Parkinson’s disease: systematic review. Mov Disord. 2009;24(5):647–654. doi:10.1002/mds.2243219117366
  • LiB, YangY, WangY, et al. Acetylation of NDUFV1 induced by a newly synthesized HDAC6 inhibitor HGC rescues dopaminergic neuron loss in Parkinson models. iScience. 2021;24(4):102302. doi:10.1016/j.isci.2021.10230233851105
  • StephensonJ, NutmaE, van der ValkP, AmorS. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154(2):204–219. doi:10.1111/imm.1292229513402
  • NoratP, SoldozyS, SokolowskiJD, et al. Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen Med. 2020;5(1):22. doi:10.1038/s41536-020-00107-x33298971
  • DurãesF, PintoM, SousaE. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals. 2018;11(2):44. doi:10.3390/ph11020044
  • BirksJ, López-ArrietaJ. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev. 2002. doi:10.1002/14651858.CD000147
  • CarlsonAP, HänggiD, MacdonaldRL, ShuttleworthCW. Nimodipine reappraised: an old drug with a future. Curr Neuropharmacol. 2020;18(1):65–82. doi:10.2174/1570159X1766619092711302131560289
  • Ul MohsinNA, AhmadM. Donepezil: a review of the recent structural modifications and their impact on anti-Alzheimer activity. Braz J Pharm Sci. 2020;56. doi:10.1590/s2175-97902019000418325.
  • BaiDL, TangXC, HeXC, HuperzineA. A potential therapeutic agent for treatment of Alzheimer’s disease. Curr Med Chem. 2000;7(3):355–374. doi:10.2174/092986700337528110637369
  • ChiacchioMA, IannazzoD, RomeoR, GiofrèSV, LegnaniL. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr Med Chem. 2020;26(40):7166–7195. doi:10.2174/0929867325666180904125400
  • Abdel-LatifNA, SabryNM, MohamedAM, AbdullaMM. Synthesis, analgesic, and antiparkinsonian profiles of some pyridine, pyrazoline, and thiopyrimidine derivatives. Monatshefte für Chemie. 2007;138(7):715–724. doi:10.1007/s00706-007-0656-8
  • KlusaV, KlimaviciusaL, DubursG, PoikansJ, ZharkovskyA. Anti-neurotoxic effects of tauropyrone, a taurine analogue. In: Taurine 6. Springer US; 2006:499–508. doi:10.1007/978-0-387-33504-9_56
  • KlimaviciusaL, KlusaV, DubursG, KaasikA, KaldaA, ZharkovskyA. Distinct effects of atypical 1,4-dihydropyridines on 1-methyl-4-phenylpyridinium-induced toxicity. Cell Biochem Funct. 2007;25(1):15–21. doi:10.1002/cbf.134016927412
  • FernandesM. Effects of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) on mitochondrial bioenergetics and oxidative stress: a comparative study. Mitochondrion. 2003;3(1):47–59. doi:10.1016/S1567-7249(03)00060-616120344
  • PupureJ, IsajevsS, GordjushinaV, et al. Distinct Influence of atypical 1,4-dihydropyridine compounds in azidothymidine-induced neuro- and cardiotoxicity in mice ex vivo. Basic Clin Pharmacol Toxicol. 2008;103(5):401–406. doi:10.1111/j.1742-7843.2008.00221.x18801031
  • LanYL, FangDY, ZhaoJ, MaTH, LiS. A research update on the potential roles of aquaporin 4 in neuroinflammation. Acta Neurol Belg. 2016;116(2):127–134. doi:10.1007/s13760-015-0520-226259614
  • MarcinkowskaM, KołaczkowskiM, KamińskiK, et al. 3-aminomethyl derivatives of 2-phenylimidazo[1,2- a]-pyridine as positive allosteric modulators of GABA A receptor with potential antipsychotic activity. ACS Chem Neurosci. 2017;8(6):1291–1298. doi:10.1021/acschemneuro.6b0043228211669
  • FranciscoW, PivattoM, DanuelloA, et al. Pyridine alkaloids from senna multijuga as acetylcholinesterase inhibitors. J Nat Prod. 2012;75(3):408–413. doi:10.1021/np200814j22304303
  • SerranoMAR, PivattoM, FranciscoW, et al. Acetylcholinesterase inhibitory pyridine alkaloids of the leaves of Senna multijuga. J Nat Prod. 2010;73(3):482–484. doi:10.1021/np900644x20000694
  • LingY, GaoW-J, LingC, et al. β-Carboline and N-hydroxycinnamamide hybrids as anticancer agents for drug-resistant hepatocellular carcinoma. Eur J Med Chem. 2019;168:515–526. doi:10.1016/j.ejmech.2019.02.05430851694
  • DaiH, HuangM, QianJ, et al. Excellent antitumor and antimetastatic activities based on novel coumarin/pyrazole oxime hybrids. Eur J Med Chem. 2019;166:470–479. doi:10.1016/j.ejmech.2019.01.07030739827
  • AlqahtaniAM, BayazeedAA. Synthesis and antiproliferative activity studies of new functionalized pyridine linked thiazole derivatives. Arab J Chem. 2021;14(1):102914. doi:10.1016/j.arabjc.2020.11.020
  • BrownDG, WobstHJ. A decade of FDA-approved drugs (2010–2019): trends and future directions. J Med Chem. 2021;64(5):2312–2338. doi:10.1021/acs.jmedchem.0c0151633617254
  • SailajaE, BhavaniS, RambabuD, Basaveswara raoMV, PalM. A greener approach toward N− 1 heteroarylation of indoles: synthesis and in vitro evaluation of potential anti-proliferative agents. Arab J Chem. 2019;12(8):3667–3677. doi:10.1016/j.arabjc.2015.11.008
  • ViradiyaD, MirzaS, ShaikhF, et al. Design and synthesis of 1,4-dihydropyridine derivatives as anti-cancer agent. Anticancer Agents Med Chem. 2017;17(7). doi:10.2174/1871520616666161206143251
  • MahmoudNFH, El-SewedyA. Facile synthesis of novel heterocyclic compounds based on pyridine moiety with pharmaceutical activities. J Heterocycl Chem. 2019;(9):1–14. doi:10.1002/jhet.3881
  • HamzaEK, HamdyNA, ZarieES, FakhrIMI, ElwahyAHM, AwadHM. Synthesis and in vitro anticancer evaluation of novel pyridine derivatives bearing tetrahydronaphthalene scaffold. Arkivoc. 2019;2019(6):459–480. doi:10.24820/ark.5550190.p011.056
  • DavariAS, AbnousK, MehriS, GhandadiM, HadizadehF. Synthesis and biological evaluation of novel pyridine derivatives as potential anticancer agents and phosphodiesterase-3 inhibitors. Bioorg Chem. 2014;57:83–89. doi:10.1016/j.bioorg.2014.09.00325277835
  • LiuXH, LiuHF, ShenX, et al. Synthesis and molecular docking studies of novel 2-chloro-pyridine derivatives containing flavone moieties as potential antitumor agents. Bioorganic Med Chem Lett. 2010;20(14):4163–4167. doi:10.1016/j.bmcl.2010.05.080
  • BassyouniFA, TawfikHA, SolimanAM, RehimMA. Synthesis and anticancer activity of some new pyridine derivatives. Res Chem Intermed. 2012;38(7):1291–1310. doi:10.1007/s11164-011-0413-9
  • AbdelazemAZ, Al-SaneaMM, ParkH-M, LeeSH. Synthesis of new diarylamides with pyrimidinyl pyridine scaffold and evaluation of their anti-proliferative effect on cancer cell lines. Bioorg Med Chem Lett. 2016;26(4):1301–1304. doi:10.1016/j.bmcl.2016.01.01426786696
  • Süss-FinkG, KhanF-A, Juillerat-JeanneretL, DysonPJ, RenfrewAK. Synthesis and anticancer activity of long-chain isonicotinic ester ligand-containing arene ruthenium complexes and nanoparticles. J Clust Sci. 2010;21(3):313–324. doi:10.1007/s10876-010-0298-6
  • KhanFA, TherrienB, Süss-FinkG, ZavaO, DysonPJ. Arene ruthenium dichloro complexes containing isonicotinic ester ligands: synthesis, molecular structure and cytotoxicity. J Organomet Chem. 2013;730:49–56. doi:10.1016/j.jorganchem.2012.10.016
  • EldehnaWM, AltoukhyA, MahrousH, Abdel-AzizHA. Design, synthesis and QSAR study of certain isatin-pyridine hybrids as potential anti-proliferative agents. Eur J Med Chem. 2015;90:684–694. doi:10.1016/j.ejmech.2014.12.01025499988
  • ChavvaK, PillalamarriS, BandaV, et al. Synthesis and biological evaluation of novel alkyl amide functionalized trifluoromethyl substituted pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorg Med Chem Lett. 2013;23(21):5893–5895. doi:10.1016/j.bmcl.2013.08.08924060486
  • Abdel-MegeedMF, BadrBE, AzaamMM, El-HitiGA. Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl)ethylphosphonates. Bioorg Med Chem. 2012;20(7):2252–2258. doi:10.1016/j.bmc.2012.02.01522370339