211
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Cell-Penetrating Peptide-Modified Graphene Oxide Nanoparticles Loaded with Rictor siRNA for the Treatment of Triple-Negative Breast Cancer

, , , , &
Pages 4961-4972 | Published online: 10 Dec 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.2159031912902
  • HarbeckN, GnantM. Breast cancer. Lancet. 2017;389(10074):1134–1150. doi:10.1016/S0140-6736(16)31891-827865536
  • HusainSR, HanJ, AuP, ShannonK, PuriRK. Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther. 2015;22(12):554–563. doi:10.1038/cgt.2015.5826584531
  • JooMK, YheeJY, KimSH, KimK. The potential and advances in RNAi therapy: chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers. J Control Release. 2014;193:113–121. doi:10.1016/j.jconrel.2014.05.03024862319
  • ThomasCE, EhrhardtA, KayMA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–358. doi:10.1038/nrg106612728277
  • YinH, KanastyRL, EltoukhyAA, VegasAJ, DorkinJR, AndersonDG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555. doi:10.1038/nrg376325022906
  • HaggagY, Abu RasB, El-TananiY, et al. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv. 2020;17(11):1655–1669. doi:10.1080/17425247.2020.181371432841584
  • HaggagY, ElshikhM, El-TananiM, BannatIM, McCarronP, TambuwalaMM. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv Transl Res. 2020;10(5):1353–1366. doi:10.1007/s13346-020-00750-332239473
  • HaggagYA, IbrahimRR, HafizAA. Design, formulation and in vivo evaluation of Novel Honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int J Nanomed. 2020;15:1625–1642. doi:10.2147/IJN.S241428
  • HaggagYA, YasserM, TambuwalaMM, El TokhySS, IsrebM, DoniaAA. Repurposing of Guanabenz acetate by encapsulation into long-circulating nanopolymersomes for treatment of triple-negative breast cancer. Int J Pharm. 2021;600:120532. doi:10.1016/j.ijpharm.2021.12053233781877
  • GoenkaS, SantV, SantS. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88. doi:10.1016/j.jconrel.2013.10.01724161530
  • NewmanL, JasimDA, PrestatE, et al. Splenic capture and in vivo intracellular biodegradation of biological-grade graphene oxide sheets. ACS Nano. 2020;14(8):10168–10186. doi:10.1021/acsnano.0c0343832658456
  • PengG, MontenegroMF, NtolaCNM, et al. Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract. Nanoscale. 2020;12(32):16730–16737. doi:10.1039/D0NR03675G32785315
  • VincentM, de LazaroI, KostarelosK. Graphene materials as 2D non-viral gene transfer vector platforms. Gene Ther. 2017;24(3):123–132. doi:10.1038/gt.2016.7927874854
  • SadeghiN, GerberDE. Targeting the PI3K pathway for cancer therapy. Future Med Chem. 2012;4(9):1153–1169. doi:10.4155/fmc.12.5622709255
  • HuaH, KongQ, ZhangH, WangJ, LuoT, JiangY. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:71.31277692
  • IppenFM, GroschJK, SubramanianM, et al. Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases. Neuro Oncol. 2019;21(11):1401–1411. doi:10.1093/neuonc/noz10531173106
  • SharmaV, SharmaAK, PunjV, PriyaP. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: a focus on breast cancer. Semin Cancer Biol. 2019;59:133–146. doi:10.1016/j.semcancer.2019.08.00531408722
  • SarbassovDD, GuertinDA, AliSM, SabatiniDM. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science. 2005;307(5712):1098–1101. doi:10.1126/science.110614815718470
  • GuertinDA, StevensDM, ThoreenCC, et al. Ablation in mice of the mTORC components raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11(6):859–871. doi:10.1016/j.devcel.2006.10.00717141160
  • OhWJ, JacintoE. mTOR complex 2 signaling and functions. Cell Cycle. 2011;10(14):2305–2316. doi:10.4161/cc.10.14.1658621670596
  • WerfelTA, WangS, JacksonMA, et al. Selective mTORC2 inhibitor therapeutically blocks breast cancer cell growth and survival. Cancer Res. 2018;78(7):1845–1858. doi:10.1158/0008-5472.CAN-17-238829358172
  • MorimotoN, KuboT, NishinaY. Tailoring the oxygen content of graphite and reduced graphene oxide for specific applications. Sci Rep. 2016;6(1):21715. doi:10.1038/srep2171526911893
  • NosratiH, AdinehvandR, ManjiliHK, RostamizadehK, DanafarH. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm Dev Technol. 2019;24(1):89–98. doi:10.1080/10837450.2018.142543329307260
  • NosratiH, BarzegariP, DanafarH, Kheiri ManjiliH. Biotin-functionalized copolymeric PEG-PCL micelles for in vivo tumour-targeted delivery of artemisinin. Artif Cells Nanomed Biotechnol. 2019;47(1):104–114. doi:10.1080/21691401.2018.154319930663422
  • LiuC, XieH, YuJ, et al. A targeted therapy for melanoma by graphene oxide composite with microRNA carrier. Drug Des Devel Ther. 2018;12:3095–3106. doi:10.2147/DDDT.S160088
  • WangY, SunG, GongY, ZhangY, LiangX, YangL. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res Lett. 2020;15(1):57. doi:10.1186/s11671-020-3281-732140846
  • YinF, HuK, ChenY, et al. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics. 2017;7(5):1133–1148. doi:10.7150/thno.1784128435453
  • WangX, SunQ, CuiC, LiJ, WangY. Anti-HER2 functionalized graphene oxide as survivin-siRNA delivery carrier inhibits breast carcinoma growth in vitro and in vivo. Drug Des Devel Ther. 2018;12:2841–2855. doi:10.2147/DDDT.S169430
  • YinD, LiY, LinH, et al. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology. 2013;24(10):105102. doi:10.1088/0957-4484/24/10/10510223425941
  • YinD, LiY, GuoB, et al. Plasmid-based Stat3 siRNA delivered by functional graphene oxide suppresses mouse malignant melanoma cell growth. Oncol Res. 2016;23(5):229–236. doi:10.3727/096504016X1455028042144927098146
  • WatanabeR, MiyataM, OneyamaC. Rictor promotes tumor progression of rapamycin-insensitive triple-negative breast cancer cells. Biochem Biophys Res Commun. 2020;531(4):636–642. doi:10.1016/j.bbrc.2020.08.01232819718
  • Morrison JolyM, HicksDJ, JonesB, et al. Rictor/mTORC2 drives progression and therapeutic resistance of HER2-amplified breast cancers. Cancer Res. 2016;76(16):4752–4764. doi:10.1158/0008-5472.CAN-15-339327197158
  • RamseyJD, FlynnNH. Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther. 2015;154:78–86. doi:10.1016/j.pharmthera.2015.07.00326210404
  • GurneyLRI, TaggartJ, TongWC, JonesAT, RobsonSC, TaggartMJ. Inhibition of inflammatory changes in human myometrial cells by cell penetrating peptide and small molecule inhibitors of NFkappaB. Front Immunol. 2018;9:2966. doi:10.3389/fimmu.2018.0296630619324
  • PengJ, RaoY, YangX, et al. Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neurosci Lett. 2017;650:153–160. doi:10.1016/j.neulet.2017.04.04528450191
  • JiaL, GormanGS, CowardLU, et al. Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer Chemother Pharmacol. 2011;68(2):513–524. doi:10.1007/s00280-010-1518-321085965
  • KoutsokerasA, PurkayasthaN, RigbyA, et al. Generation of an efficiently secreted, cell penetrating NF-kappaB inhibitor. FASEB J. 2014;28(1):373–381. doi:10.1096/fj.13-23657024072781
  • FuLS, WuYR, FangSL, et al. Cell penetrating peptide derived from human eosinophil cationic protein decreases airway allergic inflammation. Sci Rep. 2017;7(1):12352. doi:10.1038/s41598-017-12390-828955044