151
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Synthesis of Novel Pinocembrin Amino Acid Derivatives and Their Antiaging Effect on Caenorhabditis elegans via the Modulating DAF-16/FOXO

, , , , , , & show all
Pages 4177-4193 | Published online: 05 Oct 2021

References

  • CollierTJ, KanaanNM, KordowerJH. Ageing as a primary risk factor for parkinson’s disease: evidence from studies of non-human primates. Nat Rev Neurosci. 2011;12(6):359–366. doi:10.1038/nrn303921587290
  • RathorL, PandeyR. Age-induced diminution of free radicals by Boeravinone B in Caenorhabditis elegans.. Exp Gerontol. 2018;111:94–106. doi:10.1016/j.exger.2018.07.00530004006
  • PandeyS, TiwariS, KumarA, et al. Antioxidant and anti-aging potential of Juniper berry (Juniperus communis L.) essential oil in Caenorhabditis elegans model system. Ind Crops Prod. 2018;120:113–122. doi:10.1016/j.indcrop.2018.04.066
  • AlmeidaSM, NogueiraFF, AmaroCC, et al. Antioxidant effect of Resveratrol: change in MAPK cell signaling pathway during the aging process. Arch Gerontol Geriatr. 2021;92:104266. doi:10.1016/j.archger.2020.10426633070070
  • YoonDS, ChaDS, ChoiY, et al. MPK‐1/ERK is required for the full activity of resveratrol in extended lifespan and reproduction. Aging Cell. 2019;18(1):e12867. doi:10.1111/acel.1286730575269
  • JianQinZ, XiaoliX, YuqiQ, et al. Astragaloside IV extends lifespan of Caenorhabditis elegans by improving age-related functional declines and triggering anti-oxidant responses. Rejuvenation Res. 2020;24(2):120–130. doi:10.1089/rej.2020.2312
  • CordeiroLM, MachadoML, da SilvaAF, et al. Rutin protects Huntington’s disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: study in Caenorhabditis elegans model. Food Chem Toxicol. 2020;141:111323. doi:10.1016/j.fct.2020.11132332278002
  • Ai-JunD, Shan-QingZ, Xiao-BingH, et al. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. Natural ProdBioprospect. 2017;7(5):335–404. doi:10.1007/s13659-017-0135-9
  • RasulA, MillimounoFM, EltaybWA, et al. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed Res Int. 2013;379850. doi:10.1155/2013/37985023984355
  • GiriSS, SenSS, SukumaranV, et al. Pinocembrin attenuates lipopolysaccharide-induced inflammatory responses in Labeo rohita macrophages via the suppression of the NF-κB signalling pathway. Fish Shellfish Immunol. 2016;56:459–466. doi:10.1016/j.fsi.2016.07.03827492123
  • SoromouLW, ChuX, JiangL, et al. In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol. 2012;14(1):66–74. doi:10.1016/j.intimp.2012.06.00922713932
  • LopezA, MingDS, et al. Antifungal Activity of Benzoic Acid Derivatives from Piper lanceaefolium. J Nat Prod. 2002;65(1):62–64. doi:10.1021/np010410g11809068
  • Suresh kumarMA, NaiM, HemaPS, et al. Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol Carcinog. 2007;46(3):231–241. doi:10.1002/mc.2027217186548
  • PunvittayagulC, WongpoomchaiR, TayaS, PompimonW. Effect of pinocembrin isolated from Boesenbergia pandurata on xenobiotic-metabolizing enzymes in rat liver. Drug Metab Lett. 2010;5(1):1–5. doi:10.2174/187231211794455226
  • HaniehH, Hairul IslamVI, SaravananS, et al. Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro. Eur J Pharmacol. 2017;814:178–186. doi:10.1016/j.ejphar.2017.08.01228821452
  • MengF, LiuR, GaoM, et al. Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats. Brain Res. 2011;1391:93–101. doi:10.1016/j.brainres.2011.03.01021435338
  • ShiLL, ChenBN, GaoM, et al. characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sci. 2011;88:521–528. doi:10.1016/j.lfs.2011.01.01121262238
  • YuminW, JunhongG, YingchunM, et al. Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J Mol Neurosci. 2014;53(4):537–545. doi:10.1007/s12031-013-0219-x
  • YangZ-H, SunX, YunQ, et al. Uptake characteristics of pinocembrin and its effect on p-glycoprotein at the blood–brain barrier in in vitro cell experiments. J Asian Nat Prod Res. 2012;14(1):14–21. doi:10.1080/10286020.2011.62039322263589
  • de OliveiraMR, AlessandraP, Clarissa SeverinoG, et al. Pinocembrin Provides Mitochondrial Protection by the Activation of the Erk1/2-Nrf2 Signaling Pathway in SH-SY5Y Neuroblastoma Cells Exposed to Paraquat. Mol Neurobiol. 2017;54(8):6018–6031. doi:10.1007/s12035-016-0135-527696114
  • LanX, WangW, QiangL, et al. The Natural Flavonoid Pinocembrin: molecular Targets and Potential Therapeutic Applications. Mol Neurobiol. 2016;53(3):1794–1801. doi:10.1007/s12035-015-9125-225744566
  • WeiW, LiliZ, LijunX, et al. Pinocembrin mitigates depressive-like behaviors induced by chronic unpredictable mild stress through ameliorating neuroinflammation and apoptosis. Mol Med. 2020;26(1):53–63. doi:10.1186/s10020-020-00179-x
  • XiaohuiJ, MengluJ, YuqinY, et al. Synthesis of Novel Baicalein Amino Acid Derivatives and Biological Evaluation as Neuroprotective Agents. Molecules. 2019;24(20):3647–3661. doi:10.3390/molecules24203647
  • PandeSV, UtalePS, GholseSB, et al. Synthesis and Antibacterial Evaluation of Carboxamide Derivatives of Amino Acids. PharmChem J. 2014;48(1):29–33. doi:10.1007/s11094-014-1040-8
  • SpasovaM, PhilipovS, MilkovaT. Amino acid Derivatives of Aporphinic Alkaloid Glaucine and their antioxidant activity. Adv Exp Med Biol. 2009;611:267–268. doi:10.1007/978-0-387-73657-0_12019400187
  • YinZ, WenfeiH, ZhangW, et al. Tailor-made amino acid‑derived pharmaceuticals approved by the FDA in 2019. Amino Acids. 2020;52(9):1227–1261. doi:10.1007/s00726-020-02887-432880009
  • TianshuW, HongshengX, LiangX, et al. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere. 2019;221:708–726. doi:10.1016/j.chemosphere.2019.01.02130677729
  • Collins JamesJ, ChengH, StacieH, et al. The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook. 2008;1–21. doi:10.1895/wormbook.1.137.1
  • KalyanaramanB, Darley-UsmarV, DaviesKJ. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012;52(1):1–6. doi:10.1016/j.freeradbiomed.2011.09.03022027063
  • ChristianB, LiangZ, SusannahH, et al. TSG (2,3,5,4ʹ-Tetrahydroxystilbene-2-O-β-D-glucoside) from the Chinese Herb Polygonum multiflorum Increases Life Span and Stress Resistance of Caenorhabditis elegans. Oxid Med Cell Longev. 2015;124357. doi:10.1155/2015/124357
  • CypserJR, TedescoP, JohnsonTE. Hormesis and aging in Caenorhabditis elegans. Exp Gerontol. 2006;41(10):935–939. doi:10.1016/j.exger.2006.09.00417067771
  • GelinoS, ChangJT, KumstaC, et al. Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction. PLoS Genet. 2016;12(7):e1006135. doi:10.1371/journal.pgen.100613527414651
  • Skoczy´ NskaA, BudziszET, Rznadel-GrodzkaE, et al. Melanin and lipofuscin as hallmarks of skin aging. Postepy Dermatol Alergol. 2017;34(2):97–103. doi:10.5114/ada.2017.6707028507486
  • WangYF, ChenC, WangH, et al. Zhao, Study on the effects of hawthorn fruit extract on aging in Caenorhabditis elegans. Acta Nutrimenta Sin. 2016;38(4):391–396. doi:10.13325/j.cnki.acta.nutr.sin.2016.04.027
  • FengSL, ChengHR, XuZ, et al. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans.. Int J Biol Macromol. 2015;81:188–194. doi:10.1016/j.ijbiomac.2015.07.05726234580
  • AveryL, YouYJ. C. elegans feeding. WormBook. 2012;1–23. doi:10.1895/wormbook.1.150.1
  • ChamoliM, SinghA, MalikY, et al. A novel kinase regulates dietary restriction‐mediated longevity in Caenorhabditis elegans. Aging Cell. 2014;13(4):641–655. doi:10.1111/acel.1221824655420
  • ZhangW, ZhengB, DengN, et al. Effects of ethyl acetate fractional extract from Portulaca oleracea L. (PO-EA) on lifespan and healthspan in Caenorhabditis elegans. J Food Sci. 2020;85(12):4367–4376. doi:10.1111/1750-3841.1550733124727
  • MurphyCT, McCarrollSA, BargmannCI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424(6946):277–283. doi:10.1038/nature0178912845331
  • ShiYC, YuCW, LiaoVH, et al. Monascus-fermented dioscorea enhances oxidative stress resistance via DAF-16/FOXO in Caenorhabditis elegans. PLoS One. 2012;7(6):e39515. doi:10.1371/journal.pone.003951522745774
  • ReaSL, WuD, CypserJR, et al. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet. 2005;37(8):894–898. doi:10.1038/ng160816041374
  • HsuAL, MurphyCT, KenyonC. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300(5622):1142–1145. doi:10.1126/science.108370112750521
  • HendersonST, JohnsonTE. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Current Biology. 2001;11(24):1975–1980. doi:10.1016/S0960-9822(01)00594-211747825
  • KenyonC, LibinaN, HsinH, et al. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28(2):139–145. doi:10.1038/8885011381260
  • FinchCE, RuvkunG. The genetics of aging. Annu Rev Genomics Hum Genet. 2001;2:435–462. doi:10.1146/annurev.genom.2.1.43511701657
  • SamuelsonAV, CarrCE, RuvkunG. Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev. 2007;21(22):2976–2994. doi:10.1101/gad.158890718006689
  • MurphyCT, HuPJ. Insulin/insulin-like growth factor signaling in C. elegans. WormBook. 2013;1–43. doi:10.1895/wormbook.1.164.1