463
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Artemisinin Improves Acetylcholine-Induced Vasodilatation in Rats with Primary Hypertension

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 4489-4502 | Published online: 02 Nov 2021

References

  • PanieriE, SantoroMM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci. 2015;72(17):3281–3303.25972278
  • HigashiY, SasakiS, NakagawaK, MatsuuraH, OshimaT, ChayamaK. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med. 2002;346(25):1954–1962. doi:10.1056/NEJMoa01359112075056
  • DoyleAE. Hypertension and vascular disease. Am J Hypertens. 1991;4(2 Pt 2):103S–106S. doi:10.1093/ajh/4.2.103S2021454
  • GhimireK, AltmannHM, StraubAC, IsenbergJS. Nitric oxide: what’s new to NO? Am J Physiol Cell Physiol. 2017;312(3):C254–C262. doi:10.1152/ajpcell.00315.201627974299
  • RaffettoJD, CalanniF, MattanaP, KhalilRA. Sulodexide promotes arterial relaxation via endothelium-dependent nitric oxide-mediated pathway. BiochemPharmacol. 2019;166:347–356.
  • AraujoAV, AndradeFA, PauloM, et al. NO donors induce vascular relaxation by different cellular mechanisms in hypertensive and normotensive rats. Nitric Oxide. 2019;86:12–20. doi:10.1016/j.niox.2019.02.00430772501
  • ZhangF, TangH, SunS, et al. Angiotensin-(1–7) induced vascular relaxation in spontaneously hypertensive rats. Nitric Oxide. 2019;88:1–9. doi:10.1016/j.niox.2019.03.00730880106
  • ZhangF, XuY, PanY, et al. Effects of angiotensin-(1–7) and angiotensin II on acetylcholine-induced vascular relaxation in spontaneously hypertensive rats. Oxid Med Cell Longev. 2019;2019:6512485. doi:10.1155/2019/651248531827689
  • JiangW, CenY, SongY, et al. Artesunate attenuated progression of atherosclerosis lesion formation alone or combined with rosuvastatin through inhibition of pro-inflammatory cytokines and pro-inflammatory chemokines. Phytomedicine. 2016;23(11):1259–1266. doi:10.1016/j.phymed.2016.06.00427316397
  • WangHY, HuangRP, HanP, et al. The effects of artemisinin on the proliferation and apoptosis of vascular smooth muscle cells of rats. Cell Biochem Funct. 2014;32(2):201–208.24105880
  • CaoQ, DuH, FuX, DuanN, LiuC, LiX. Artemisinin attenuated atherosclerosis in high-fat diet-fed ApoE-/- mice by promoting macrophage autophagy through the AMPK/mTOR/ULK1 pathway. J Cardiovasc Pharmacol. 2020;75(4):321–332. doi:10.1097/FJC.000000000000079431895870
  • DuH, ZhaoQ, ZangH, ChangC, LiX. Artemisinin attenuates the development of atherosclerotic lesions by the regulation of vascular smooth muscle cell phenotype switching. Life Sci. 2019;237:116943. doi:10.1016/j.lfs.2019.11694331604109
  • XiongZ, SunG, ZhuC, et al. Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-kappaB signaling. Eur J Pharmacol. 2010;649(1–3):277–284. doi:10.1016/j.ejphar.2010.09.01820863781
  • TangM, WangR, FengP, et al. Dihydroartemisinin attenuates pulmonary hypertension through inhibition of pulmonary vascular remodeling in rats. J Cardiovasc Pharmacol. 2020;76(3):337–348. doi:10.1097/FJC.000000000000086232569012
  • YuH, LiuJ, DongY, et al. Anti-hypoxic effect of dihydroartemisinin on pulmonary artery endothelial cells. Biochem Biophys Res Commun. 2018;506(4):840–846. doi:10.1016/j.bbrc.2018.10.17630391003
  • KimKE, KoKH, HeoRW, et al. Artemisia annua leaf extract attenuates hepatic steatosis and inflammation in high-fat diet-fed mice. J Med Food. 2016;19(3):290–299. doi:10.1089/jmf.2015.352726741655
  • LuP, ZhangFC, QianSW, et al. Artemisinin derivatives prevent obesity by inducing browning of WAT and enhancing BAT function. Cell Res. 2016;26(10):1169–1172. doi:10.1038/cr.2016.10827633061
  • CaoQ, JiangY, ShiJ, et al. Artemisinin inhibits the proliferation, migration, and inflammatory reaction induced by tumor necrosis factor-alpha in vascular smooth muscle cells through nuclear factor kappa B pathway. J Surg Res. 2015;194(2):667–678. doi:10.1016/j.jss.2014.12.01325575733
  • HeXL, LiuZ. [Protection of artesunate on activation and injury of vascular endothelial cells induced by lipopolysaccharide]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004;24(12):1110–1113. Chinese.15658657
  • DongF, ZhouX, LiC, et al. Dihydroartemisinin targets VEGFR2 via the NF-kappaB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol Ther. 2014;15(11):1479–1488. doi:10.4161/15384047.2014.95572825482945
  • ZhangY, XuG, ZhangS, WangD, Saravana PrabhaP, ZuoZ. Antitumor research on artemisinin and its bioactive derivatives. Nat Prod Bioprospect. 2018;8(4):303–319. doi:10.1007/s13659-018-0162-129633188
  • EfferthT, RomeroMR, WolfDG, StammingerT, MarinJJ, MarschallM. The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 2008;47(6):804–811. doi:10.1086/59119518699744
  • Huan-huanC, Li-LiY, Shang-BinL. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell. Cancer Lett. 2004;211(2):163–173. doi:10.1016/j.canlet.2004.03.01415219940
  • LeeHA, KimKS, KimEJ. General pharmacology of artesunate, a commonly used antimalarial drug: effects on central nervous, cardiovascular, and respiratory system. Toxicol Res. 2010;26(3):223–232. doi:10.5487/TR.2010.26.3.22324278528
  • SordiR, NandraKK, ChiazzaF, et al. Artesunate protects against the organ injury and dysfunction induced by severe hemorrhage and resuscitation. Ann Surg. 2017;265(2):408–417. doi:10.1097/SLA.000000000000166428059970
  • LiuZ, QuM, YuL, SongP, ChangY. Artesunate inhibits renal ischemia-reperfusion-mediated remote lung inflammation through attenuating ROS-induced activation of NLRP3 inflammasome. Inflammation. 2018;41(4):1546–1556. doi:10.1007/s10753-018-0801-z29730819
  • SunS, ZhangF, PanY, et al. A TOR2A gene product: salusin-beta contributes to attenuated vasodilatation of spontaneously hypertensive rats. Cardiovasc Drugs Ther. 2021;35(1):125–139. doi:10.1007/s10557-020-06983-132458319
  • PanY, SunS, WangX, et al. Improvement of vascular function by knockdown of salusin-beta in hypertensive rats via nitric oxide and reactive oxygen species signaling pathway. Front Physiol. 2021;12:622954. doi:10.3389/fphys.2021.62295433897447
  • RenXS, TongY, QiuY, et al. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles. 2020;9(1):1698795. doi:10.1080/20013078.2019.169879531839907
  • HanY, ChoYE, AyonR, et al. SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L1027–L1036. doi:10.1152/ajplung.00167.201526361875
  • SofolaOA, RajiI, LadipoC, CokerHA. Artesunate causes relaxation of rat aortic rings and reduces the contractile response to noradrenaline. Nig Q J Hosp Med. 2008;18(2):50–52.19068550
  • TongY, LiuY, ZhengH, et al. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/beta-catenin signaling. Oncotarget. 2016;7(21):31413–31428. doi:10.18632/oncotarget.892027119499
  • SunH, ZhangF, XuY, et al. Salusin-beta promotes vascular calcification via nicotinamide adenine dinucleotide phosphate/reactive oxygen species-mediated klotho downregulation. Antioxid Redox Signal. 2019;31(18):1352–1370. doi:10.1089/ars.2019.772331578871
  • GiaccoF, BrownleeM. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.22354521030723
  • GeisztM. NADPH oxidases: new kids on the block. Cardiovasc Res. 2006;71(2):289–299. doi:10.1016/j.cardiores.2006.05.00416765921
  • LingWC, MustafaMR, VanhouttePM, MuruganDD. Chronic administration of sodium nitrite prevents hypertension and protects arterial endothelial function by reducing oxidative stress in angiotensin II-infused mice. VasculPharmacol. 2018;102:11–20.
  • BrandesRP. Endothelial dysfunction and hypertension. Hypertension. 2014;64(5):924–928. doi:10.1161/HYPERTENSIONAHA.114.0357525156167
  • KonukogluD, UzunH. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2017;956:511–540.28035582
  • ChinnathambiV, BalakrishnanM, RamadossJ, YallampalliC, SathishkumarK. Testosterone alters maternal vascular adaptations: role of the endothelial NO system. Hypertension. 2013;61(3):647–654. doi:10.1161/HYPERTENSIONAHA.111.0048623339170
  • BrushJE Jr, FaxonDP, SalmonS, JacobsAK, RyanTJ. Abnormal endothelium-dependent coronary vasomotion in hypertensive patients. J Am Coll Cardiol. 1992;19(4):809–815. doi:10.1016/0735-1097(92)90522-O1545076
  • DeussenA, OhanyanV, JannaschA, YinL, ChilianW. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol. 2012;52(4):794–801. doi:10.1016/j.yjmcc.2011.10.00122004900
  • FiorentiniC, BarbierP, GalliC, et al. Pulmonary vascular overreactivity in systemic hypertension. A pathophysiological link between the greater and the lesser circulation. Hypertension. 1985;7(6 Pt 1):995–1002. doi:10.1161/01.HYP.7.6.9954077227
  • GomartS, DamoiseauxC, JespersP, et al. Pulmonary vasoreactivity in spontaneously hypertensive rats–effects of endothelin-1 and leptin. Respir Res. 2014;15:12. doi:10.1186/1465-9921-15-1224499246
  • AharinejadS, SchraufnagelDE, BockP, et al. Spontaneously hypertensive rats develop pulmonary hypertension and hypertrophy of pulmonary venous sphincters. Am J Pathol. 1996;148(1):281–290.8546217
  • EzeIC, BassaFK, EsseC, et al. Epidemiological links between malaria parasitaemia and hypertension: findings from a population-based survey in rural cote d’Ivoire. J Hypertens. 2019;37(7):1384–1392. doi:10.1097/HJH.000000000000207130801386
  • VerdecchiaP, AngeliF, ReboldiG. Does malaria cause hypertension? Circ Res. 2016;119(1):7–9. doi:10.1161/CIRCRESAHA.116.30901327340264
  • Robles-CabreraA, Michel-ChavezA, Callejas-RojasRC, Malamud-KesslerC, DelgadoG, Estanol-VidalB. [The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure]. Rev Neurol. 2014;59(11):508–516. Spanish .25418146
  • HeusserK, TankJ, EngeliS, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–626. doi:10.1161/HYPERTENSIONAHA.109.14066520101001
  • MannelliM, PupilliC, LanzillottiR, IanniL, SerioM. Catecholamines and blood pressure regulation. Horm Res. 1990;34(3–4):156–160. doi:10.1159/0001818162104398
  • GantenD, StockG. Humoral and neurohormonal aspects of blood pressure regulation: focus on angiotensin. KlinWochenschr. 1978;56(Suppl 1):31–41. doi:10.1007/BF01477450