987
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Development and Characterization of Ulvan Polysaccharides-Based Hydrogel Films for Potential Wound Dressing Applications

ORCID Icon, , , & ORCID Icon
Pages 4213-4226 | Published online: 05 Oct 2021

References

  • TranTTV, TruongHB, TranNHV, et al. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Nat Prod Res. 2018;32(19):2291–2296. doi:10.1080/14786419.2017.140809829199449
  • ZehlilaA, SchaumannA, MloukaAB, et al. Glioprotective effect of Ulva rigida extract against UVB cellular damages. Algal Res. 2017;23:203–215. doi:10.1016/j.algal.2017.02.001
  • de AraújoIWF, RodriguesJAG, QuinderéALG, et al. Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca. Int J Biol Macromol. 2016;92:820–830. doi:10.1016/j.ijbiomac.2016.07.09427481342
  • PaulertRJ, Smania StadnikMJ, PizzolattiMG. Antimicrobial properties of extracts from the green seaweed Ulva fasciata Delile against pathogenic bacteria and fungi. Arch Hydrobiol Suppl Algol Stud. 2007;123(1):123–130. doi:10.1127/1864-1318/2007/0123-0123
  • AminHH. Ulvan as A new trend in agriculture, food processing and medicine. Asian J Fish Aquat Res. 2020;6(4):47–54. doi:10.9734/ajfar/2020/v6i430105
  • PeasuraN, LaohakunjitN, KerdchoechuenO, WanlapaS. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. Int J Biol Macromol. 2015;81:912–919. doi:10.1016/j.ijbiomac.2015.09.03026400737
  • LiJ, ChiZ, YuL, JiangF, LiuC. Sulfated modification, characterization, and antioxidant and moisture absorption/retention activities of a soluble neutral polysaccharide from Enteromorpha prolifera. Int J Biol Macromol. 2017;105:1544–1553. doi:10.1016/j.ijbiomac.2017.03.15728363657
  • ZhaoR, LiangH, ClarkeE, JacksonC, XueM. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085–2099. doi:10.3390/ijms17122085
  • PercivalSL, McCartySM, LipskyB. Biofilms and wounds: an overview of the evidence. Adv Wound Care. 2015;4(7):373–381. doi:10.1089/wound.2014.0557
  • MuntimaduguE, IckowiczDE, DombAJ, KhanW. Polysaccharide biomaterials. Isr J Chem. 2013;53(9–10):787–794. doi:10.1002/ijch.201300062
  • ToskasG, HeinemannS, HeinemannC, et al. Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts. Carbohydr Polym. 2012;89(3):997–1002. doi:10.1016/j.carbpol.2012.04.04524750891
  • AlvesA, SousaRA, ReisRL. Processing of degradable ulvan 3D porous structures for biomedical applications. J Biomed Mater Res - Part A. 2013;101 A(4):998–1006. doi:10.1002/jbm.a.34403
  • JaiswalL, ShankarS, RhimJ-W. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr Polym. 2019;224:115191. doi:10.1016/j.carbpol.2019.11519131472875
  • KogaAY, PereiraAV, LipinskiLCO. Evaluation of wound healing effect of alginate films containin g Aloe vera (Aloe barbadensis Miller) gel. J Biomater Appl. 2018;32(9):1212–1221. doi:10.1177/088532821875461529380661
  • PiconeP, SabatinoMA, AjovalasitA, GiacomazzaD, DispenzaC, Di CarloM. Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application. Int J Biol Macromol. 2019;121:784–795. doi:10.1016/j.ijbiomac.2018.10.07830342149
  • LeeYE, KimH, SeoC, et al. Marine polysaccharides: therapeutic efficacy and biomedical applications. Arch Pharm Res. 2017;40(9):1006–1020. doi:10.1007/s12272-017-0958-228918561
  • HowellSNG, SullivanBL. Seaweeds. Offshore Sea Life ID Guid. 2015;31. doi:10.1515/9781400874033-011
  • FerdouseF, HoldtSL, SmithR, MurúaP, YangZ. The global status of seaweed production, trade and utilization. FAO Globefish Res Program. 2018;124:120.
  • DashM, SamalSK, BartoliC, et al. Biofunctionalization of Ulvan scaffolds for bone tissue engineering. ACS Appl Mater Interfaces. 2014;6(5):3211–3218. doi:10.1021/am404912c24494863
  • MorelliA, ChielliniF. Ulvan as a new type of biomaterial from renewable resources: functionalization and hydrogel preparation. Macromol Chem Phys. 2010;211(7):821–832. doi:10.1002/macp.200900562
  • SulastriE, LesmanaR, ZubairS, ElaminKM, WathoniN. Review and its biomedical applications. Chem Pharm Bull. 2021;69(5):432–443. doi:10.1248/cpb.c20-00763
  • ChenX, YueZ, WinbergPC, et al. Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomater Sci. 2019;7(8):3497–3509. doi:10.1039/c9bm00480g31290861
  • YaichH, GarnaH, BesbesS, et al. Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocoll. 2014;40(2014):53–63. doi:10.1016/j.foodhyd.2014.02.002
  • Hernández-GaribayE, Zertuche-GonzálezJA, Pacheco-RuízI. Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. J Appl Phycol. 2011;23(3):537–542. doi:10.1007/s10811-010-9629-0
  • WahlströmN, NylanderF, Malmhäll-BahE, et al. Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast. Carbohydr Polym. 2020;233(January):115852–115861. doi:10.1016/j.carbpol.2020.11585232059903
  • CerdanD, GrillonC, MonsignyM, RedziniakG, KiedaC. Human keratinocyte membrane lectins: characterization and modulation of their expression by cytokines. Biol Cell. 1991;73(1):35–42. doi:10.1016/0248-4900(91)90006-91819363
  • AndrèsE, MolinariJ, PéterszegiG, et al. Pharmacological properties of rhamnose-rich polysaccharides, potential interest in age-dependent alterations of connectives tissues. Pathol Biol. 2006;54(7):420–425. doi:10.1016/j.patbio.2006.07.00416919895
  • FauryG, RuszovaE, MolinariJ, et al. The α-l-Rhamnose recognizing lectin site of human dermal fibroblasts functions as a signal transducer: modulation of Ca2+ fluxes and gene expression. Biochim Biophys Acta (BBA)-General Subj. 2008;1780(12):1388–1394. doi:10.1016/j.bbagen.2008.07.008
  • LahayeM, CimadevillaEAC, KuhlenkampR, QuemenerB, LognonéV, DionP. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). J Appl Phycol. 1999;11(1):1–7. doi:10.1023/A:1008063600071
  • QuemenerB, LahayeM, Bobin-DubigeonC. Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography. J Appl Phycol. 1997;9(2):179–188. doi:10.1023/A:1007971023478
  • HiroseK, SasatsuM, ToraishiT, OnishiH. Novel xyloglucan sheet for the treatment of deep wounds: preparation, physicochemical characteristics, and in vivo healing effects. Biol Pharm Bull. 2019;42(8):1409–1414. doi:10.1248/bpb.b18-0076431366876
  • LahayeM, AxelosMAV. Gelling properties of water-soluble polysaccharides from proliferating marine green seaweeds (Ulva spp.). Carbohydr Polym. 1993;22(4):261–265. doi:10.1016/0144-8617(93)90129-R
  • LahayeM, BrunelM, BonninE. Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulua sp. (Ulvales, Chlorophyta). Carbohydr Res. 1997;304(3–4):325–333. doi:10.1016/S0008-6215(97)00270-X9468631
  • HuW, WangZ, XiaoY, ZhangS, WangJ. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019;7(3):843–855. doi:10.1039/c8bm01246f30648168
  • JiangF, ChiZ, DingY, et al. Wound dressing hydrogel of enteromorpha prolifera polysaccharide-polyacrylamide composite: a facile transformation of marine blooming into biomedical material. ACS Appl Mater Interfaces. 2021;13(12):14530–14542. doi:10.1021/acsami.0c2154333729756
  • SudermanN, IsaMIN, SarbonNM. The effect of plasticizers on the functional properties of biodegradable gelatin-based film: a review. Food Biosci. 2018;24:111–119. doi:10.1016/j.fbio.2018.06.006
  • JiaP, XiaH, TangK, ZhouY. Plasticizers derived from biomass resources: a short review. Polymers. 2018;10(12):1303. doi:10.3390/polym10121303
  • KhamesA. Hexyl alginate derivative, an amphiphilic innovative buccal film-forming material of promising mechanical and release characteristics for the improvement of repaglinide bioavailability. Drug Des Devel Ther. 2019;13:925–940. doi:10.2147/DDDT.S196425
  • NordinN, OthmanSH, RashidSA, BashaRK. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll. 2020;106:105884. doi:10.1016/j.foodhyd.2020.105884
  • ZhangP, ZhaoY, ShiQ. Characterization of a novel edible film based on gum ghatti: effect of plasticizer type and concentration. Carbohydr Polym. 2016;153:345–355. doi:10.1016/j.carbpol.2016.07.08227561505
  • LiuF, SenCB, Avena-BustillosRJ, et al. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocoll. 2017;65:1–9. doi:10.1016/j.foodhyd.2016.10.004
  • AlvesA, CaridadeSG, ManoJF, SousaRA, ReisRL. Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res. 2010;345(15):2194–2200. doi:10.1016/j.carres.2010.07.03920800225
  • CostaC, AlvesA, PintoPR, et al. Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydr Polym. 2012;88(2):537–546. doi:10.1016/j.carbpol.2011.12.041
  • D638-14 ASTM. Standard test method for tensile properties of plastics. ASTM Int. 2015;1–17. doi:10.1520/D0638-14.1
  • XuRB, YangX, WangJ, et al. Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. Int J Mol Sci. 2012;13(11):14262–14277. doi:10.3390/ijms13111426223203063
  • RezvaniE, SchleiningG, SumenG, TaherianAR. Assessment of physical and mechanical properties of sodium caseinate and stearic acid based film-forming emulsions and edible films. J Food Eng. 2013;116(2):598–605. doi:10.1016/j.jfoodeng.2012.12.039
  • RezvanianM, AhmadN, Mohd AminMCI, NgSF. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol. 2017;97:131–140. doi:10.1016/j.ijbiomac.2016.12.07928064048
  • PansaraC, MishraR, MehtaT, ParikhA, GargS. Formulation of chitosan stabilized silver nanoparticle-containing wound healing film: in vitro and in vivo characterization. J Pharm Sci. 2020;109(7):2196–2205. doi:10.1016/j.xphs.2020.03.02832240689
  • Üstündağ OkurN, HökenekN, OkurME, et al. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J. 2019;27(5):738–752. doi:10.1016/j.jsps.2019.04.01031297030
  • TzivelekaLA, SapalidisA, KikionisS, et al. Hybrid sponge-like scaffolds based on ulvan and gelatin: design, characterization and evaluation of their potential use in bone tissue engineering. Materials. 2020;13(7):1–20. doi:10.3390/ma13071763
  • KikionisS, IoannouE, ToskasG, RoussisV. Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. J Appl Polym Sci. 2015;132(26):1–5. doi:10.1002/app.4215325866416
  • TianH, YinX, ZengQ, ZhuL, ChenJ. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int J Biol Macromol. 2015;79:577–582. doi:10.1016/j.ijbiomac.2015.05.03126026981
  • DashM, SamalSK, MorelliA, et al. Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization. Carbohydr Polym. 2018;182:254–264. doi:10.1016/j.carbpol.2017.11.01629279122
  • PereiraR, CarvalhoA, VazDC, GilMH, MendesA, BártoloP. Development of novel alginate based hydrogel films for wound healing applications. Int J Biol Macromol. 2013;52(1):221–230. doi:10.1016/j.ijbiomac.2012.09.03123059189
  • GanesanAR, ShanmugamM, BhatR. Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. Int J Biol Macromol. 2018;112:1164–1170. doi:10.1016/j.ijbiomac.2018.02.08929454950
  • Abou El AzmN, FleitaD, RifaatD, MpingirikaEZ, AmlehE, El-Sayed,MMH. Production of bioactive compounds from the sulfated polysaccharides extracts of ulva lactuca: post-extraction enzymatic hydrolysis followed by ion-exchange chromatographic fractionation. Molecules. 2019;24(11):2132–2149. doi:10.3390/molecules24112132
  • LiB, LiuS, XingR, et al. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydr Polym. 2013;92(2):1991–1996. doi:10.1016/j.carbpol.2012.11.08823399249
  • Abd El-BakyHH, El BazFK, El-BarotyGS. Evaluation of marine alga Ulva Lactuca L. as a source of natural preservative ingredient. Am Eurasian J Agric Env Sci. 2008;3(3):434–444.
  • ShanmugapriyaK, KimH, KangHW. Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydr Polym. 2020;247(January):116624. doi:10.1016/j.carbpol.2020.11662432829788
  • WangY, BeekmanJ, HewJ, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. 2018;123:3–17. doi:10.1016/j.addr.2017.09.01828941987
  • HadisiZ, NourmohammadiJ, NassiriSM. The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. Int J Biol Macromol. 2018;107:2008–2019. doi:10.1016/j.ijbiomac.2017.10.06129037870