276
Views
52
CrossRef citations to date
0
Altmetric
Original Research

Ketamine Induces Ferroptosis of Liver Cancer Cells by Targeting lncRNA PVT1/miR-214-3p/GPX4

, , , , &
Pages 3965-3978 | Published online: 18 Sep 2021

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. doi:10.3322/caac.2159031912902
  • SiaD, VillanuevaA, FriedmanSL, LlovetJM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–761. doi:10.1053/j.gastro.2016.11.04828043904
  • LlovetJM, RicciS, MazzaferroV, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–390. doi:10.1056/NEJMoa070885718650514
  • WangC, VegnaS, JinH, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019;574:268–272. doi:10.1038/s41586-019-1607-331578521
  • DixonSJ, LembergKM, LamprechtMR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–1072. doi:10.1016/j.cell.2012.03.04222632970
  • YagodaN, von RechenbergM, ZaganjorE, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:864–868. doi:10.1038/nature0585917568748
  • YangWS, SriRamaratnamR, WelschME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–331. doi:10.1016/j.cell.2013.12.01024439385
  • DixonSJ, PatelDN, WelschM, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:e02523. doi:10.7554/eLife.0252324844246
  • ShintokuR, TakigawaY, YamadaK, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 2017;108:2187–2194. doi:10.1111/cas.1338028837253
  • DundeeJW, KnoxJW, BlackGW, et al. Ketamine as an induction agent in anaesthetics. Lancet. 1970;295(7661):1370–1371. doi:10.1016/S0140-6736(70)91273-0
  • Pomarol-ClotetE, HoneyGD, MurrayGK, et al. Psychological effects of ketamine in healthy volunteers. Phenomenological study. Br J Psychiatry. 2006;189:173–179. doi:10.1192/bjp.bp.105.01526316880489
  • NewcomerJW, FarberNB, Jevtovic-TodorovicV, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20:106–118. doi:10.1016/S0893-133X(98)00067-09885791
  • BowdleTA, RadantAD, CowleyDS, KharaschED, StrassmanRJ, Roy-ByrnePP. Psychedelic effects of ketamine in healthy volunteers: relationship to steady-state plasma concentrations. Anesthesiology. 1998;88:82–88. doi:10.1097/00000542-199801000-000159447860
  • StewartCE. Ketamine as a street drug. Emerg Med Serv. 2001;30:30, 2, 4 passim.
  • MorganCJ, CurranHV; Independent Scientific Committee on D. Ketamine use: a review. Addiction. 2012;107:27–38. doi:10.1111/j.1360-0443.2011.03576.x21777321
  • WeismanH. Anesthesia for pediatric ophthalmology. Ann Ophthalmol. 1971;3:229–232.5163952
  • RoytblatL, TalmorD, RachinskyM, et al. Ketamine attenuates the interleukin-6 response after cardiopulmonary bypass. Anesth Analg. 1998;87:266–271. doi:10.1213/00000539-199808000-000069706914
  • ZarateCAJr, SinghJB, CarlsonPJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–864. doi:10.1001/archpsyc.63.8.85616894061
  • WolffK, WinstockAR. Ketamine: from medicine to misuse. CNS Drugs. 2006;20:199–218. doi:10.2165/00023210-200620030-0000316529526
  • SinghV, GillespieTW, HarveyRD. Intranasal ketamine and its potential role in cancer-related pain. Pharmacotherapy. 2018;38:390–401. doi:10.1002/phar.209029396996
  • BellRF, EcclestonC, KalsoEA. Ketamine as an adjuvant to opioids for cancer pain. Cochrane Database Syst Rev. 2017;6:CD003351.28657160
  • FallonMT, WilcockA, KellyCA, et al. Oral ketamine vs placebo in patients with cancer-related neuropathic pain: a randomized clinical trial. JAMA Oncol. 2018;4:870–872. doi:10.1001/jamaoncol.2018.013129621378
  • YangG, LuX, YuanL. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839:1097–1109. doi:10.1016/j.bbagrm.2014.08.01225159663
  • ChenC, ZhouL, WangH, et al. Long noncoding RNA CNALPTC1 promotes cell proliferation and migration of papillary thyroid cancer via sponging miR-30 family. Am J Cancer Res. 2018;8:192–206.29416932
  • WangD, DingL, WangL, et al. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget. 2015;6:41045–41055. doi:10.18632/oncotarget.572826516927
  • KongYW, CannellIG, de MoorCH, et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A. 2008;105:8866–8871. doi:10.1073/pnas.080065010518579786
  • XuMD, WangY, WengW, et al. A positive feedback loop of lncRNA-PVT1 and FOXM1 facilitates gastric cancer growth and invasion. Clin Cancer Res. 2017;23:2071–2080. doi:10.1158/1078-0432.CCR-16-074227756785
  • GuoK, YaoJ, YuQ, et al. The expression pattern of long non-coding RNA PVT1 in tumor tissues and in extracellular vesicles of colorectal cancer correlates with cancer progression. Tumour Biol. 2017;39:1010428317699122. doi:10.1177/101042831769912228381186
  • GaoYL, ZhaoZS, ZhangMY, HanLJ, DongYJ, XuB. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Res. 2017;25:1391–1398. doi:10.3727/096504017X1488155983356228276314
  • RenY, HuangW, WengG, CuiP, LiangH, LiY. LncRNA PVT1 promotes proliferation, invasion and epithelial-mesenchymal transition of renal cell carcinoma cells through downregulation of miR-16-5p. Onco Targets Ther. 2019;12:2563–2575. doi:10.2147/OTT.S19023931040699
  • LuT, YangY, LiZ, LuS. MicroRNA-214-3p inhibits the stem-like properties of lung squamous cell cancer by targeting YAP1. Cancer Cell Int. 2020;20:413. doi:10.1186/s12935-020-01506-232863772
  • YangY, LiZ, YuanH, et al. Reciprocal regulatory mechanism between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer. Oncogenesis. 2019;8:50. doi:10.1038/s41389-019-0151-131492847
  • HanLC, WangH, NiuFL, YanJY, CaiHF. Effect miR-214-3p on proliferation and apoptosis of breast cancer cells by targeting survivin protein. Eur Rev Med Pharmacol Sci. 2019;23:7469–7474.31539134
  • FangYY, TanMR, ZhouJ, et al. miR-214-3p inhibits epithelial-to-mesenchymal transition and metastasis of endometrial cancer cells by targeting TWIST1. Onco Targets Ther. 2019;12:9449–9458. doi:10.2147/OTT.S18103731819476
  • DuanW, HuJ, LiuY. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor. Exp Mol Pathol. 2019;107:171–178. doi:10.1016/j.yexmp.2019.02.00430817910
  • El-DakhlySM, SalamaAAA, HassaninSOM, YassenNN, HamzaAA, AminA. Aescin and diosmin each alone or in low dose- combination ameliorate liver damage induced by carbon tetrachloride in rats. BMC Res Notes. 2020;13:259. doi:10.1186/s13104-020-05094-232460808
  • HamzaAA, LashinFM, GamelM, HassaninSO, AbdallaY, AminA. Hawthorn herbal preparation from Crataegus oxyacantha attenuates in vivo carbon tetrachloride -induced hepatic fibrosis via modulating oxidative stress and inflammation. Antioxidants (Basel). 2020;9:1173.
  • HamzaAA, HeebaGH, HamzaS, AbdallaA, AminA. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/ inflammation pathway. Biomed Pharmacother. 2021;134:111102. doi:10.1016/j.biopha.2020.11110233338743
  • AminA, Mahmoud-GhoneimD, SyamMI, DaoudS. Neural network assessment of herbal protection against chemotherapeutic-induced reproductive toxicity. Theor Biol Med Model. 2012;9:1. doi:10.1186/1742-4682-9-122272939