139
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Exploring the Underlying Mechanism of Shenyankangfu Tablet in the Treatment of Glomerulonephritis Through Network Pharmacology, Machine Learning, Molecular Docking, and Experimental Validation

, , , , & ORCID Icon
Pages 4585-4601 | Published online: 09 Nov 2021

References

  • ZhangL, LongJ, JiangW, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–906. doi:10.1056/NEJMc160246927579659
  • NagaiK, YamagataK, IsekiK, et al. Antihypertensive treatment and risk of cardiovascular mortality in patients with chronic kidney disease diagnosed based on the presence of proteinuria and renal function: a large longitudinal study in Japan. PLoS One. 2019;14(12):e0225812. doi:10.1371/journal.pone.022581231800605
  • KellyDM, RothwellPM. Proteinuria as an independent predictor of stroke: systematic review and meta-analysis. Int J Stroke. 2020;15(1):29–38. doi:10.1177/174749301989520631935154
  • BikbovB, PurcellCA, LeveyAS; Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395(10225):709–733. doi:10.1016/S0140-6736(20)30045-332061315
  • WuJ, DuanSW, YangHT, et al. Efficacy and safety of Shenyankangfu Tablet, a Chinese patent medicine, for primary glomerulonephritis: a multicenter randomized controlled trial. J Integr Med. 2021;19(2):111–119. doi:10.1016/j.joim.2021.01.00933589406
  • JinM, YinZ, WeiK, et al. Metanephric mesenchyme-derived Foxd1(+) mesangial precursor cells alleviate mesangial proliferative glomerulonephritis. J Mol Med. 2019;97(4):553–561. doi:10.1007/s00109-019-01749-130810761
  • CampeanV, KarpeB, HaasC, et al. Angiopoietin 1 and 2 gene and protein expression is differentially regulated in acute anti-Thy1.1 glomerulonephritis. Am J Physiol Renal Physiol. 2008;294(5):F1174–F1184. doi:10.1152/ajprenal.00320.200718272601
  • XuWL, LiuS, LiN, et al. Quercetin antagonizes glucose fluctuation induced renal injury by inhibiting aerobic glycolysis via HIF-1alpha/miR-210/ISCU/FeS pathway. Front Med. 2021;8:656086. doi:10.3389/fmed.2021.656086
  • GuYY, ZhangM, CenH, et al. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: based on network pharmacology and molecular docking study. PLoS One. 2021;16(1):e0245209. doi:10.1371/journal.pone.024520933444408
  • RezkAM, IbrahimI, MahmoudMF, MahmoudAAA. Quercetin and lithium chloride potentiate the protective effects of carvedilol against renal ischemia-reperfusion injury in high-fructose, high-fat diet-fed Swiss albino mice independent of renal lipid signaling. Chem Biol Interact. 2021;333:109307. doi:10.1016/j.cbi.2020.10930733159969
  • LiuT, YangQ, ZhangX, et al. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci. 2020;257:118116. doi:10.1016/j.lfs.2020.11811632702447
  • El-FarAH, LebdaMA, NoreldinAE, et al. Quercetin attenuates pancreatic and renal D-galactose-induced aging-related oxidative alterations in rats. Int J Mol Sci. 2020;21(12):4348. doi:10.3390/ijms21124348
  • SatoS, NorikuraT, MukaiY. Maternal quercetin intake during lactation attenuates renal inflammation and modulates autophagy flux in high-fructose-diet-fed female rat offspring exposed to maternal malnutrition. Food Funct. 2019;10(8):5018–5031. doi:10.1039/C9FO01134J31355385
  • Al-RasheedNM, FaddahLM, MohamedAM, Abdel BakyNA, Al-RasheedNM, MohammadRA. Potential impact of quercetin and idebenone against immuno- inflammatory and oxidative renal damage induced in rats by titanium dioxide nanoparticles toxicity. J Oleo Sci. 2013;62(11):961–971. doi:10.5650/jos.62.96124200945
  • AlshehriAS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch Physiol Biochem. 2021;1–14. doi:10.1080/13813455.2021.1890129
  • SharmaD, Kumar TekadeR, KaliaK. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine. 2020;76:153235. doi:10.1016/j.phymed.2020.15323532563017
  • NagaiK. Co-inhibitory receptor signaling in T-cell-mediated autoimmune glomerulonephritis. Front Med. 2020;7:584382. doi:10.3389/fmed.2020.584382
  • YuP, WellmannU, KunderS, et al. Toll-like receptor 9-independent aggravation of glomerulonephritis in a novel model of SLE. Int Immunol. 2006;18(8):1211–1219. doi:10.1093/intimm/dxl06716798839
  • WornleM, SchmidH, BanasB, et al. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol. 2006;168(2):370–385. doi:10.2353/ajpath.2006.05049116436653
  • LiuQ, ImaizumiT, KawaguchiS, et al. Toll-like receptor 3 signaling contributes to regional neutrophil recruitment in cultured human glomerular endothelial cells. Nephron. 2018;139(4):349–358. doi:10.1159/00048950729791907
  • LiD-D, BecharaRR, RamaniK, et al. Antibody-induced glomerulonephritis pathology is amplified by RTEC-intrinsic IL-17 signaling and restrained by the endoribonuclease Regnase-1. 2021;2021. doi:10.1101/2021.01.11.425972
  • PisitkunP, HaHL, WangH, et al. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity. 2012;37(6):1104–1115. doi:10.1016/j.immuni.2012.08.01423123062
  • UrushiharaM, KinoshitaY, KondoS, KagamiS. Involvement of the intrarenal renin-angiotensin system in experimental models of glomerulonephritis. J Biomed Biotechnol. 2012;2012:601786. doi:10.1155/2012/60178622811597