240
Views
7
CrossRef citations to date
0
Altmetric
Review

New Insights of Anti-Hyperglycemic Agents and Traditional Chinese Medicine on Gut Microbiota in Type 2 Diabetes

ORCID Icon & ORCID Icon
Pages 4849-4863 | Published online: 30 Nov 2021

References

  • ZhengY, LeySH, HuFB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi:10.1038/nrendo.2017.15129219149
  • PascaleA, MarchesiN, MarelliC, et al. Microbiota and metabolic diseases. Endocrine. 2018;61(3):357–371. doi:10.1007/s12020-018-1605-529721802
  • GriceEA, SegreJA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet. 2012;13:151–170. doi:10.1146/annurev-genom-090711-16381422703178
  • EckburgPB, BikEM, BernsteinCN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. doi:10.1126/science.111059115831718
  • ThursbyE, JugeN. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi:10.1042/BCJ2016051028512250
  • TaiN, WongFS, WenL. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord. 2015;16(1):55–65. doi:10.1007/s11154-015-9309-025619480
  • KikuchiK, SaigusaD, KanemitsuY, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019;10(1):1835. doi:10.1038/s41467-019-09735-431015435
  • MontandonSA, JornayvazFR. Effects of antidiabetic drugs on gut microbiota composition. Genes. 2017;8(10):250. doi:10.3390/genes8100250
  • KyriachenkoY, FalalyeyevaT, KorotkyiO, MolochekN, KobyliakN. Crosstalk between gut microbiota and antidiabetic drug action. World J Diabetes. 2019;10(3):154–168. doi:10.4239/wjd.v10.i3.15430891151
  • ZhangR, GaoX, BaiH, NingK. Traditional Chinese medicine and gut microbiome: their respective and concert effects on healthcare. Front Pharmacol. 2020;11:538. doi:10.3389/fphar.2020.0053832390855
  • Wang-R-R, ZhangL, Xu-J-J, et al. Human microbiome brings new insights to traditional Chinese medicine. J Bio-X Res. 2018;1(1):41–44. doi:10.1097/JBR.0000000000000007
  • ZhongH, RenH, LuY, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine. 2019;47:373–383. doi:10.1016/j.ebiom.2019.08.04831492563
  • GaoB, ZhongM, ShenQ, et al. Gut microbiota in early pregnancy among women with Hyperglycaemia vs. Normal blood glucose. BMC Pregnancy Childbirth. 2020;20(1):284. doi:10.1186/s12884-020-02961-532393255
  • CaoM, PengY, LuY, et al. Controls of hyperglycemia improves dysregulated microbiota in diabetic mice. Transplantation. 2021;105(9):1980–1988. doi:10.1097/TP.000000000000360334416751
  • BouterKE, van RaalteDH, GroenAK, NieuwdorpM. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology. 2017;152(7):1671–1678. doi:10.1053/j.gastro.2016.12.04828192102
  • FukeN, NagataN, SuganumaH, OtaT. Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients. 2019;11(10):2277. doi:10.3390/nu11102277
  • GomesJMG, CostaJA, AlfenasRCG. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism. 2017;68:133–144. doi:10.1016/j.metabol.2016.12.00928183445
  • CaniPD, BibiloniR, KnaufC, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. doi:10.2337/db07-140318305141
  • AllinKH, NielsenT, PedersenO. Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2015;172(4):R167–177. doi:10.1530/EJE-14-087425416725
  • GaoJ, GuoZ. Progress in the synthesis and biological evaluation of lipid A and its derivatives. Med Res Rev. 2018;38(2):556–601. doi:10.1002/med.2144728621828
  • CaniPD, OstoM, GeurtsL, EverardA. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279–288. doi:10.4161/gmic.1962522572877
  • SaadMJ, SantosA, PradaPO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31(4):283–293. doi:10.1152/physiol.00041.201527252163
  • BoulangéCL, NevesAL, ChillouxJ, NicholsonJK, DumasME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42. doi:10.1186/s13073-016-0303-227098727
  • AlkananiAK, HaraN, LienE, et al. Induction of diabetes in the RIP-B7.1 mouse model is critically dependent on TLR3 and MyD88 pathways and is associated with alterations in the intestinal microbiome. Diabetes. 2014;63(2):619–631. doi:10.2337/db13-100724353176
  • KimJJ, SearsDD. TLR4 and insulin resistance. Gastroenterol Res Pract. 2010;2010:212563.20814545
  • MartensEC, NeumannM, DesaiMS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–470. doi:10.1038/s41579-018-0036-x29904082
  • TilgH, ZmoraN, AdolphTE, ElinavE. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20(1):40–54. doi:10.1038/s41577-019-0198-431388093
  • ThaissCA, LevyM, GroshevaI, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376–1383. doi:10.1126/science.aar331829519916
  • MarutaK, TakajoT, AkibaY, et al. GLP-2 acutely prevents endotoxin-related increased intestinal paracellular permeability in rats. Dig Dis Sci. 2020;65(9):2605–2618. doi:10.1007/s10620-020-06097-632006214
  • CaniPD, PossemiersS, Van de WieleT, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–1103. doi:10.1136/gut.2008.16588619240062
  • CaniPD. Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clin Microbiol Infect. 2012;18(Suppl 4):50–53.
  • HeissCN, OlofssonLE. Gut microbiota-dependent modulation of energy metabolism. J Innate Immun. 2018;10(3):163–171. doi:10.1159/00048151929131106
  • PriyadarshiniM, NavarroG, LaydenBT. Gut microbiota: FFAR reaching effects on islets. Endocrinology. 2018;159(6):2495–2505. doi:10.1210/en.2018-0029629846565
  • YangQ, OuyangJ, SunF, YangJ. Short-chain fatty acids: a soldier fighting against inflammation and protecting from tumorigenesis in people with diabetes. Front Immunol. 2020;11:590685. doi:10.3389/fimmu.2020.59068533363537
  • ChristiansenCB, GabeMBN, SvendsenB, DragstedLO, RosenkildeMM, HolstJJ. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol. 2018;315(1):G53–g65. doi:10.1152/ajpgi.00346.201729494208
  • XieC, JonesKL, RaynerCK, WuT. Enteroendocrine hormone secretion and metabolic control: importance of the region of the gut stimulation. Pharmaceutics. 2020;12(9):790. doi:10.3390/pharmaceutics12090790
  • HareKJ, VilsbøllT, AsmarM, DeaconCF, KnopFK, HolstJJ. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes. 2010;59(7):1765–1770. doi:10.2337/db09-141420150286
  • QinX, ShenH, LiuM, et al. GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G943–949. doi:10.1152/ajpgi.00303.200415677555
  • DeaneAM, NguyenNQ, StevensJE, et al. Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab. 2010;95(1):215–221. doi:10.1210/jc.2009-150319892837
  • WuT, RaynerCK, HorowitzM. Incretins. Handb Exp Pharmacol. 2016;233:137–171.25903418
  • MoranTH, SmedhU, KinzigKP, et al. (3–36) inhibits gastric emptying and produces acute reductions in food intake in rhesus monkeys. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R384–388. doi:10.1152/ajpregu.00535.200415388494
  • FengY, WangY, WangP, HuangY, WangF. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem. 2018;49(1):190–205. doi:10.1159/00049285330138914
  • KoethRA, WangZ, LevisonBS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–585. doi:10.1038/nm.314523563705
  • RomanoKA, VivasEI, Amador-NoguezD, ReyFE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio. 2015;6(2):e02481. doi:10.1128/mBio.02481-1425784704
  • ChenY, WengZ, LiuQ, et al. FMO3 and its metabolite TMAO contribute to the formation of gallstones. Biochim Biophys Acta Mol Basis Dis. 2019;1865(10):2576–2585. doi:10.1016/j.bbadis.2019.06.01631251986
  • LeverM, SlowS. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem. 2010;43(9):732–744. doi:10.1016/j.clinbiochem.2010.03.00920346934
  • Lent-SchochetD, SilvaR, McLaughlinM, HuetB, JialalI. Changes to trimethylamine-N-oxide and its precursors in nascent metabolic syndrome. Horm Mol Biol Clin Investig. 2018;35(2). doi: 10.1515/hmbci-2018-0015.
  • RandrianarisoaE, Lehn-StefanA, WangX, et al. Relationship of serum trimethylamine N-Oxide (TMAO) levels with early atherosclerosis in humans. Sci Rep. 2016;6:26745. doi:10.1038/srep2674527228955
  • LiXS, ObeidS, KlingenbergR, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38(11):814–824. doi:10.1093/eurheartj/ehw58228077467
  • LiJ, TanY, ZhouP, et al. Association of Trimethylamine N-Oxide levels and calcification in culprit lesion segments in patients with ST-segment-elevation myocardial infarction evaluated by optical coherence tomography. Front Cardiovasc Med. 2021;8:628471. doi:10.3389/fcvm.2021.62847133718451
  • DingL, ChangM, GuoY, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):286. doi:10.1186/s12944-018-0939-630567573
  • SunX, JiaoX, MaY, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun. 2016;481(1–2):63–70. doi:10.1016/j.bbrc.2016.11.01727833015
  • GovindarajuluM, PinkyPD, SteinkeI, et al. Gut metabolite TMAO induces synaptic plasticity deficits by promoting endoplasmic reticulum stress. Front Mol Neurosci. 2020;13:138. doi:10.3389/fnmol.2020.0013832903435
  • McGloneER, BloomSR. Bile acids and the metabolic syndrome. Ann Clin Biochem. 2019;56(3):326–337. doi:10.1177/000456321881779830453753
  • RajaniC, JiaW. Bile acids and their effects on diabetes. Front Med. 2018;12(6):608–623. doi:10.1007/s11684-018-0644-x30306382
  • van de PeppelIP, VerkadeHJ, JonkerJW. Metabolic consequences of ileal interruption of the enterohepatic circulation of bile acids. Am J Physiol Gastrointest Liver Physiol. 2020;319(5):G619–g625. doi:10.1152/ajpgi.00308.202032938201
  • González-RegueiroJA, Moreno-CastañedaL, UribeM, Chávez-TapiaNC. The role of bile acids in glucose metabolism and their relation with diabetes. Ann Hepatol. 2017;16(Suppl. 1: s3–105.):16–21. doi:10.5604/01.3001.0010.5672
  • AliAH, CareyEJ, LindorKD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3(1):5. doi:10.3978/j.issn.2305-5839.2014.12.0625705637
  • XieC, HuangW, YoungRL, et al. Role of bile acids in the regulation of food intake, and their dysregulation in metabolic disease. Nutrients. 2021;13(4):1104. doi:10.3390/nu1304110433800566
  • TrabelsiMS, DaoudiM, PrawittJ, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629. doi:10.1038/ncomms862926134028
  • DeutschmannK, ReichM, KlindtC, et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt B):1319–1325. doi:10.1016/j.bbadis.2017.08.02128844960
  • KatsumaS, HirasawaA, TsujimotoG. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–390. doi:10.1016/j.bbrc.2005.01.13915721318
  • YangH, LiuH, JiaoY, QianJ. Roux-en-Y gastrointestinal bypass promotes activation of TGR5 and peptide YY. Endocr Metab Immune Disord Drug Targets. 2020;20(8):1262–1267. doi:10.2174/187153032066620062802450032600238
  • DucaFA, CôtéCD, RasmussenBA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21(5):506–511. doi:10.1038/nm.378725849133
  • McCreightLJ, BaileyCJ, PearsonER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–435. doi:10.1007/s00125-015-3844-926780750
  • HurKY, LeeMS. New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig. 2015;6(6):600–609. doi:10.1111/jdi.12328
  • LeeH, KoG. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. 2014;80(19):5935–5943. doi:10.1128/AEM.01357-1425038099
  • ElbereI, KalninaI, SilamikelisI, et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS One. 2018;13(9):e0204317. doi:10.1371/journal.pone.020431730261008
  • BryrupT, ThomsenCW, KernT, et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia. 2019;62(6):1024–1035. doi:10.1007/s00125-019-4848-730904939
  • ElbereI, SilamikelisI, DinduneII, et al. Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One. 2020;15(10):e0241338. doi:10.1371/journal.pone.024133833125401
  • NakajimaH, TakewakiF, HashimotoY, et al. The effects of metformin on the gut microbiota of patients with type 2 diabetes: a two-center, Quasi-Experimental Study. Life. 2020;10(9). doi:10.3390/life10090195
  • de la Cuesta-zuluagaJ, MuellerNT, Corrales-AgudeloV, et al. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62. doi:10.2337/dc16-132427999002
  • KukaJ, VidejaM, Makrecka-KukaM, et al. Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice. Sci Rep. 2020;10(1):14555. doi:10.1038/s41598-020-71470-432884086
  • SansomeDJ, XieC, VeedfaldS, HorowitzM, RaynerCK, WuT. Mechanism of glucose-lowering by metformin in type 2 diabetes: role of bile acids. Diabetes Obes Metab. 2020;22(2):141–148. doi:10.1111/dom.1386931468642
  • SunL, XieC, WangG, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24(12):1919–1929. doi:10.1038/s41591-018-0222-430397356
  • ForslundK, HildebrandF, NielsenT, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. doi:10.1038/nature1576626633628
  • LiuZ, MaS. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem. 2017;12(11):819–829. doi:10.1002/cmdc.20170021628498640
  • SmithBJ, MillerRA, EricssonAC, HarrisonDC, StrongR, SchmidtTM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019;19(1):130. doi:10.1186/s12866-019-1494-731195972
  • XuGD, CaiL, NiYS, et al. Comparisons of effects on intestinal short-chain fatty acid concentration after exposure of two glycosidase inhibitors in mice. Biol Pharm Bull. 2018;41(7):1024–1033. doi:10.1248/bpb.b17-0097829962399
  • BaxterNT, LesniakNA, SinaniH, SchlossPD, KoropatkinNM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere. 2019;4(1):e00528–18.
  • ZhangX, FangZ, ZhangC, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293–307. doi:10.1007/s13300-017-0226-y28130771
  • SuB, LiuH, LiJ, et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(5):729–739. doi:10.1111/1753-0407.1223225327485
  • GuY, WangX, LiJ, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785. doi:10.1038/s41467-017-01682-229176714
  • SoccioRE, ChenER, LazarMA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014;20(4):573–591. doi:10.1016/j.cmet.2014.08.00525242225
  • NanjanMJ, MohammedM, Prashantha KumarBR, ChandrasekarMJN. Thiazolidinediones as antidiabetic agents: a critical review. Bioorg Chem. 2018;77:548–567. doi:10.1016/j.bioorg.2018.02.00929475164
  • FajasL, AuboeufD, RaspéE, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997;272(30):18779–18789. doi:10.1074/jbc.272.30.187799228052
  • MadsenMSA, GrønlundRV, EidJ, et al. Characterization of local gut microbiome and intestinal transcriptome responses to rosiglitazone treatment in diabetic db/db mice. Biomed Pharmacother. 2021;133:110966. doi:10.1016/j.biopha.2020.11096633171401
  • XuP, HongF, WangJ, et al. DBZ is a putative PPARγ agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis. Biochim Biophys Acta Gen Subj. 2017;1861(11 Pt A):2690–2701. doi:10.1016/j.bbagen.2017.07.01328736228
  • Garcia-BeltranC, MalpiqueR, CarbonettoB, et al. Gut microbiota in adolescent girls with polycystic ovary syndrome: effects of randomized treatments. Pediatr Obes. 2021;16(4):e12734. doi:10.1111/ijpo.1273432989872
  • DruckerDJ, NauckMA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–1705. doi:10.1016/S0140-6736(06)69705-517098089
  • GilbertMP, PratleyRE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol (Lausanne). 2020;11:178. doi:10.3389/fendo.2020.0017832308645
  • MeierJJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–742. doi:10.1038/nrendo.2012.14022945360
  • ZhaoL, ChenY, XiaF, et al. A glucagon-like peptide-1 receptor agonist lowers weight by modulating the structure of gut microbiota. Front Endocrinol (Lausanne). 2018;9:233. doi:10.3389/fendo.2018.0023329867765
  • ZhangQ, XiaoX, ZhengJ, et al. Featured article: structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp Biol Med (Maywood). 2018;243(1):34–44. doi:10.1177/153537021774376529171288
  • ShangJ, LiuF, ZhangB, et al. Liraglutide-induced structural modulation of the gut microbiota in patients with type 2 diabetes mellitus. PeerJ. 2021;9:e11128. doi:10.7717/peerj.1112833850659
  • ZhangN, TaoJ, GaoL, et al. Liraglutide attenuates nonalcoholic fatty liver disease by modulating gut microbiota in rats administered a high-fat diet. Biomed Res Int. 2020;2020:2947549. doi:10.1155/2020/294754932149099
  • MoreiraGV, AzevedoFF, RibeiroLM, et al. Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J Nutr Biochem. 2018;62:143–154. doi:10.1016/j.jnutbio.2018.07.00930292107
  • WismannP, PedersenSL, HansenG, et al. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol Behav. 2018;192:72–81. doi:10.1016/j.physbeh.2018.03.00429540315
  • MadsenMSA, HolmJB, PallejàA, et al. Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci Rep. 2019;9(1):15582. doi:10.1038/s41598-019-52103-x31666597
  • DeaconCF. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16(11):642–653. doi:10.1038/s41574-020-0399-832929230
  • LiaoX, SongL, ZengB, et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine. 2019;44:665–674. doi:10.1016/j.ebiom.2019.03.05730922964
  • YanX, FengB, LiP, TangZ, WangL. Microflora disturbance during progression of glucose intolerance and effect of sitagliptin: an Animal Study. J Diabetes Res. 2016;2016:2093171. doi:10.1155/2016/209317127631013
  • OlivaresM, NeyrinckAM, PötgensSA, et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia. 2018;61(8):1838–1848. doi:10.1007/s00125-018-4647-629797022
  • ChenJ, WilliamsS, HoS, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 2010;1(2):57–92. doi:10.1007/s13300-010-0006-422127746
  • van BommelEJ, MuskietMH, TonneijckL, KramerMH, NieuwdorpM, van RaalteDH. SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin J Am Soc Nephrol. 2017;12(4):700–710. doi:10.2215/CJN.0608061628254770
  • PoulsenSB, FentonRA, RiegT. Sodium-glucose cotransport. Curr Opin Nephrol Hypertens. 2015;24(5):463–469. doi:10.1097/MNH.000000000000015226125647
  • LeeDM, BattsonML, JarrellDK, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17(1):62. doi:10.1186/s12933-018-0708-x29703207
  • HeratLY, WardNC, MagnoAL, et al. Sodium glucose co-transporter 2 inhibition reduces succinate levels in diabetic mice. World J Gastroenterol. 2020;26(23):3225–3235. doi:10.3748/wjg.v26.i23.322532684737
  • MatsumotoM, SuzumaK, MakiT, et al. Succinate increases in the vitreous fluid of patients with active proliferative diabetic retinopathy. Am J Ophthalmol. 2012;153(5):896–902.e891. doi:10.1016/j.ajo.2011.10.00622265145
  • van BommelEJM, HerremaH, DavidsM, KramerMHH, NieuwdorpM, van RaalteDH. Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: results of a double-blind randomized trial in patients with type 2 diabetes. Diabetes Metab. 2020;46(2):164–168. doi:10.1016/j.diabet.2019.11.00531816432
  • KuoGH, GaulMD, LiangY, et al. Synthesis and biological evaluation of benzocyclobutane-C-glycosides as potent and orally active SGLT1/SGLT2 dual inhibitors. Bioorg Med Chem Lett. 2018;28(7):1182–1187. doi:10.1016/j.bmcl.2018.02.05729523385
  • DuF, HinkeSA, CavanaughC, et al. Potent sodium/glucose cotransporter SGLT1/2 dual inhibition improves glycemic control without marked gastrointestinal adaptation or colonic microbiota changes in rodents. J Pharmacol Exp Ther. 2018;365(3):676–687. doi:10.1124/jpet.118.24857529674332
  • TianJ, JinD, BaoQ, et al. Evidence and potential mechanisms of traditional Chinese medicine for the treatment of type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2019;21(8):1801–1816. doi:10.1111/dom.1376031050124
  • ZhengY, DingQ, WeiY, et al. Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: a systematic review and meta-analysis. Phytomedicine. 2020;88:153455. doi:10.1016/j.phymed.2020.15345533478831
  • ZhaoF, LiuQ, CaoJ, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats. Food Chem Toxicol. 2020;135:110886. doi:10.1016/j.fct.2019.11088631626838
  • LiuG, LiangL, YuG, LiQ. Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats. Int J Biol Macromol. 2018;115:711–717. doi:10.1016/j.ijbiomac.2018.04.12729702167
  • ChengY, SibusisoL, HouL, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int J Biol Macromol. 2019;131:1162–1170. doi:10.1016/j.ijbiomac.2019.04.04030974142
  • ChenC, YouLJ, HuangQ, et al. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Funct. 2018;9(7):3732–3742. doi:10.1039/C7FO01346A29995048
  • ChenLC, FanZY, WangHY, WenDC, ZhangSY. Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food Funct. 2019;10(7):4372–4380. doi:10.1039/C9FO00406H31276140
  • ChenM, LuB, LiY, et al. Metabolomics insights into the modulatory effects of long-term compound polysaccharide intake in high-fat diet-induced obese rats. Nutr Metab (Lond). 2018;15:8. doi:10.1186/s12986-018-0246-229410697
  • LiuY, LaiG, GuoY, et al. Protective effect of Ganoderma lucidum spore extract in trimethylamine-N-oxide-induced cardiac dysfunction in rats. J Food Sci. 2021;86(2):546–562. doi:10.1111/1750-3841.1557533438268
  • ZhangCH, ShengJQ, SarsaiyaS, et al. The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria-coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway. J Ethnopharmacol. 2019;237:202–214. doi:10.1016/j.jep.2019.02.04030807814
  • XiaoS, LiuC, ChenM, et al. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol. 2020;104(1):303–317. doi:10.1007/s00253-019-10174-w31758238
  • ZhangB, YueR, ChenY, et al. The herbal medicine scutellaria-coptis alleviates intestinal mucosal barrier damage in diabetic rats by inhibiting inflammation and modulating the gut microbiota. Evid Based Complement Alternat Med. 2020;2020:4568629. doi:10.1155/2020/456862933224253
  • ShinNR, GuN, ChoiHS, KimH. Combined effects of Scutellaria baicalensis with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. Am J Physiol Endocrinol Metab. 2020;318(1):E52–e61. doi:10.1152/ajpendo.00221.201931770016
  • YangG, LinCC, YangY, et al. Nobiletin prevents trimethylamine oxide-induced vascular inflammation via inhibition of the NF-κB/MAPK pathways. J Agric Food Chem. 2019;67(22):6169–6176. doi:10.1021/acs.jafc.9b0127031117553
  • WangK, FengX, ChaiL, CaoS, QiuF. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev. 2017;49(2):139–157. doi:10.1080/03602532.2017.130654428290706
  • HabtemariamS. Berberine pharmacology and the gut microbiota: a hidden therapeutic link. Pharmacol Res. 2020;155:104722. doi:10.1016/j.phrs.2020.10472232105754
  • ZhuL, ZhangD, ZhuH, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe(-/-) mice. Atherosclerosis. 2018;268:117–126. doi:10.1016/j.atherosclerosis.2017.11.02329202334
  • LiX, SuC, JiangZ, et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. NPJ Biofilms Microbiomes. 2021;7(1):36. doi:10.1038/s41522-021-00205-833863898
  • WuM, YangS, WangS, et al. Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- Mice. Front Pharmacol. 2020;11:223. doi:10.3389/fphar.2020.0022332231564
  • DouY, HuangR, LiQ, et al. Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways. Biomed Pharmacother. 2021;137:111312. doi:10.1016/j.biopha.2021.11131233524788
  • ZhangW, XuJH, YuT, ChenQK. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother. 2019;118:109131. doi:10.1016/j.biopha.2019.10913131545226
  • ZhangX, ZhaoY, ZhangM, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One. 2012;7(8):e42529. doi:10.1371/journal.pone.004252922880019
  • LiuD, ZhangY, LiuY, et al. Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway. Exp Clin Endocrinol Diabetes. 2018;126(8):513–520. doi:10.1055/s-0043-12506629365334
  • WangY, LiuH, ZhengM, et al. Berberine slows the progression of prediabetes to diabetes in Zucker diabetic fatty rats by enhancing intestinal secretion of glucagon-like peptide-2 and improving the gut microbiota. Front Endocrinol (Lausanne). 2021;12:609134. doi:10.3389/fendo.2021.60913434025574
  • LiM, ZhouW, DangY, LiC, JiG, ZhangL. Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice. Biomed Pharmacother. 2020;132:110953. doi:10.1016/j.biopha.2020.11095333254441
  • ZhangY, GuY, RenH, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun. 2020;11(1):5015. doi:10.1038/s41467-020-18414-833024120