81
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Downregulation of IRF2 Alleviates Sepsis-Related Acute Kidney Injury in vitro and in vivo

, , &
Pages 5123-5132 | Published online: 22 Dec 2021

References

  • MehtaRL, BouchardJ, SorokoSB, et al. Sepsis as a cause and consequence of acute kidney injury: program to improve care in acute renal disease. Intensive Care Med. 2011;37(2):241–248. doi:10.1007/s00134-010-2089-921152901
  • BagshawSM, UchinoS, BellomoR, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2007;2(3):431–439. doi:10.2215/CJN.0368110617699448
  • HotchkissRS, KarlIE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–150. doi:10.1056/NEJMra02133312519925
  • HosteEA, BagshawSM, BellomoR, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–1423. doi:10.1007/s00134-015-3934-726162677
  • AlobaidiR, BasuRK, GoldsteinSL, BagshawSM. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35(1):2–11. doi:10.1016/j.semnephrol.2015.01.00225795495
  • KomadaT, MuruveDA. The role of inflammasomes in kidney disease. Nat Rev Nephrol. 2019;15(8):501–520. doi:10.1038/s41581-019-0158-z31164720
  • ShiJ, ZhaoY, WangK, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–665. doi:10.1038/nature1551426375003
  • StrowigT, Henao-MejiaJ, ElinavE, FlavellR. Inflammasomes in health and disease. Nature. 2012;481(7381):278–286. doi:10.1038/nature1075922258606
  • LamkanfiM, DixitVM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 2012;28(1):137–161. doi:10.1146/annurev-cellbio-101011-15574522974247
  • FinkSL, CooksonBT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–1916. doi:10.1128/IAI.73.4.1907-1916.200515784530
  • MartinonF, BurnsK, TschoppJ. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–426. doi:10.1016/S1097-2765(02)00599-312191486
  • KayagakiN, WarmingS, LamkanfiM, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–121. doi:10.1038/nature1055822002608
  • JorgensenI, RayamajhiM, MiaoEA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17(3):151–164. doi:10.1038/nri.2016.14728138137
  • YuanJ, NajafovA, PyBF. Roles of caspases in necrotic cell death. Cell. 2016;167(7):1693–1704. doi:10.1016/j.cell.2016.11.04727984721
  • YiYS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology. 2017;152(2):207–217. doi:10.1111/imm.1278728695629
  • ShiJ, GaoW, ShaoF. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–254. doi:10.1016/j.tibs.2016.10.00427932073
  • WangY, ZhangM, SunY, et al. Role of short-wavelength blue light in the formation of cataracts and the expression of caspase-1, caspase-11, Gasdermin D in rat lens epithelial cells: insights into a novel pathogenic mechanism of cataracts. BMC Ophthalmol. 2020;20(1):020–01565. doi:10.1186/s12886-020-01565-z
  • LeveyAS, JamesMT. Acute kidney injury. Ann Intern Med. 2017;167(9):ITC66. doi:10.7326/AITC20171107029114754
  • HaradaH, TakahashiE, ItohS, HaradaK, HoriTA, TaniguchiT. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol Cell Biol. 1994;14(2):1500–1509. doi:10.1128/mcb.14.2.1500-1509.19947507207
  • CuiH, BanerjeeS, GuoS, XieN, LiuG. IFN regulatory factor 2 inhibits expression of glycolytic genes and lipopolysaccharide-induced proinflammatory responses in macrophages. J Immunol. 2018;200(9):3218–3230. doi:10.4049/jimmunol.170157129563175
  • KayagakiN, LeeBL, StoweIB, et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci Signal. 2019;12(582):582. doi:10.1126/scisignal.aax4917
  • NicholsB, JogP, LeeJH, et al. Innate immunity pathways regulate the nephropathy gene apolipoprotein L1. Kidney Int. 2015;87(2):332–342. doi:10.1038/ki.2014.27025100047
  • WilsonRL, SelvarajuV, LakshmananR, et al. Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice. J Surg Res. 2017;220:68–78. doi:10.1016/j.jss.2017.06.06229180214
  • WuY, WangL, MengL, CaoGK, ZhaoYL, ZhangY. Biological effects of autophagy in mice with sepsis-induced acute kidney injury. Exp Ther Med. 2019;17(1):316–322. doi:10.3892/etm.2018.689930651797
  • BergsbakenT, FinkSL, CooksonBT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. doi:10.1038/nrmicro207019148178
  • AndersHJ, MuruveDA. The inflammasomes in kidney disease. J Am Soc Nephrol. 2011;22(6):1007–1018. doi:10.1681/ASN.201008079821566058
  • PostonJT, KoynerJL. Sepsis associated acute kidney injury. BMJ. 2019;9:364.
  • PickkersP, OstermannM, JoannidisM, et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 2017;43(9):1198–1209. doi:10.1007/s00134-017-4687-228138736
  • HolthoffJH, WangZ, SeelyKA, GokdenN, MayeuxPR. Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int. 2012;81(4):370–378.21975863
  • ShumHP, KongHH, ChanKC, YanWW, ChanTM. Septic acute kidney injury in critically ill patients - a single-center study on its incidence, clinical characteristics, and outcome predictors. Ren Fail. 2016;38(5):706–716. doi:10.3109/0886022X.2016.115774926981621
  • MiaoEA, RajanJV, AderemA. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011;243(1):206–214. doi:10.1111/j.1600-065X.2011.01044.x21884178
  • ParikhCR, AbrahamE, AncukiewiczM, EdelsteinCL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005;16(10):3046–3052. doi:10.1681/ASN.200503023616148039
  • YamauchiK, ChoiIJ, LuH, OgiwaraH, GrahamDY, YamaokaY. Regulation of IL-18 in Helicobacter pylori infection. J Immunol. 2008;180(2):1207–1216. doi:10.4049/jimmunol.180.2.120718178861
  • GalluzziL, VitaleI, AaronsonSA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541. doi:10.1038/s41418-017-0012-429362479
  • NagataS, TanakaM. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17(5):333–340. doi:10.1038/nri.2016.15328163302
  • LorenzG, DarisipudiMN, AndersHJ. Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrol Dial Transplant. 2014;29(1):41–48. doi:10.1093/ndt/gft33224026244
  • HuttonHL, OoiJD, HoldsworthSR, KitchingAR. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology. 2016;21(9):736–744. doi:10.1111/nep.1278527011059
  • ShenJ, WangL, JiangN, et al. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci Rep. 2016;6(34682):1.28442746
  • HeWT, WanH, HuL, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285–1298. doi:10.1038/cr.2015.13926611636
  • ShiJ, ZhaoY, WangY, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514(7521):187–192. doi:10.1038/nature1368325119034
  • ChengKT, XiongS, YeZ, et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest. 2017;127(11):4124–4135. doi:10.1172/JCI9449528990935
  • KayagakiN, StoweIB, LeeBL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–671. doi:10.1038/nature1554126375259