195
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Methylcobalamin Protects Melanocytes from H2O2-Induced Oxidative Stress by Activating the Nrf2/HO-1 Pathway

ORCID Icon, , , , ORCID Icon, , & show all
Pages 4837-4848 | Published online: 30 Nov 2021

References

  • EzzedineK, EleftheriadouV, WhittonM, van GeelN. Vitiligo. Lancet. 2015;386(9988):74–84. doi:10.1016/S0140-6736(14)60763-725596811
  • BonifaceK, SeneschalJ, PicardoM, TaiebA. Vitiligo: focus on clinical aspects, immunopathogenesis, and therapy. Clin Rev Allergy Immunol. 2018;54(1):52–67. doi:10.1007/s12016-017-8622-728685247
  • BergqvistC, EzzedineK. Vitiligo: a review. Dermatology. 2020;236(6):571–592. doi:10.1159/00050610332155629
  • DelmasV, LarueL. Molecular and cellular basis of depigmentation in vitiligo patients. Exp Dermatol. 2019;28(6):662–666. doi:10.1111/exd.1385830536790
  • SchallreuterKU, MooreJ, WoodJM, et al. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc. 1999;4(1):91–96. doi:10.1038/sj.jidsp.5640189
  • XieH, ZhouF, LiuL, et al. Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci. 2016;81(1):3–9. doi:10.1016/j.jdermsci.2015.09.00326387449
  • NguyenT, NioiP, PickettCB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284(20):13291–13295. doi:10.1074/jbc.R90001020019182219
  • LinX, MengX, SongZ, LinJ. Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo. Arch Biochem Biophys. 2020;696:108670. doi:10.1016/j.abb.2020.10867033186606
  • LeiXG, ZhuJH, ChengWH, et al. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev. 2016;96(1):307–364. doi:10.1152/physrev.00010.201426681794
  • MatthewsRG. Cobalamin-dependent methyltransferases. Acc Chem Res. 2001;34(8):681–689. doi:10.1021/ar000005111513576
  • GueantJL, Gueant-RodriguezRM, KosgeiVJ, CoelhoD. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B12 metabolism. Crit Rev Biochem Mol Biol. 2021;1–23. doi:10.1080/10409238.2021.1979459
  • LamAB, KervinK, TanisJE. Vitamin B12 impacts amyloid beta-induced proteotoxicity by regulating the methionine/S-adenosylmethionine cycle. Cell Rep. 2021;36(13):109753. doi:10.1016/j.celrep.2021.10975334592146
  • SchrierMS, ZhangY, TrivediMS, DethRC. Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie. 2021. doi:10.1016/j.biochi.2021.09.006
  • BirchCS, BraschNE, McCaddonA, WilliamsJH. A novel role for vitamin B(12): cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med. 2009;47(2):184–188. doi:10.1016/j.freeradbiomed.2009.04.02319409980
  • WangM, XuT. Methyl B12 protects PC12 cells against cytotoxicity induced by Abeta25-35. J Cell Biochem. 2019. doi:10.1002/jcb.28475
  • MizukamiH, OgasawaraS, YamagishiS, TakahashiK, YagihashiS. Methylcobalamin effects on diabetic neuropathy and nerve protein kinase C in rats. Eur J Clin Invest. 2011;41(4):442–450. doi:10.1111/j.1365-2362.2010.02430.x21128935
  • VandammeN, BerxG. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci. 2019;76(10):1919–1934. doi:10.1007/s00018-019-03049-w30830237
  • JianZ, LiK, LiuL, et al. Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J Invest Dermatol. 2011;131(7):1420–1427. doi:10.1038/jid.2011.5621412259
  • JiangL, GuoZ, KongY, LiangJ, WangY, WangK. Protective effects of glutamine on human melanocyte oxidative stress model. Indian J Dermatol Venereol Leprol. 2018;84(3):269–274. doi:10.4103/ijdvl.IJDVL_106_1729491190
  • MangaP, ElbulukN, OrlowSJ. Recent advances in understanding vitiligo. F1000Res. 2016;5:2234. doi:10.12688/f1000research.8976.1
  • MartindaleJL, HolbrookNJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192(1):1–15. doi:10.1002/jcp.1011912115731
  • DeoSS, BhagatAR, ShahRN. Study of oxidative stress in peripheral blood of Indian vitiligo patients. Indian Dermatol Online J. 2013;4(4):279–282. doi:10.4103/2229-5178.12063724350005
  • TroubaKJ, HamadehHK, AminRP, GermolecDR. Oxidative stress and its role in skin disease. Antioxid Redox Signal. 2002;4(4):665–673. doi:10.1089/1523086026022017512230879
  • DenatL, KadekaroAL, MarrotL, LeachmanSA, Abdel-MalekZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol. 2014;134(6):1512–1518. doi:10.1038/jid.2014.6524573173
  • ValkoM, JomovaK, RhodesCJ, KucaK, MusilekK. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1–37. doi:10.1007/s00204-015-1579-526343967
  • BickersDR, AtharM. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126(12):2565–2575. doi:10.1038/sj.jid.570034017108903
  • ChenJ, LiS, LiC. Mechanisms of melanocyte death in vitiligo. Med Res Rev. 2021;41(2):1138–1166. doi:10.1002/med.2175433200838
  • KumarR, ParsadD, KanwarAJ. Role of apoptosis and melanocytorrhagy: a comparative study of melanocyte adhesion in stable and unstable vitiligo. Br J Dermatol. 2011;164(1):187–191. doi:10.1111/j.1365-2133.2010.10039.x21175561
  • QiuL, SongZ, SetaluriV. Oxidative stress and vitiligo: the Nrf2-ARE signaling connection. J Invest Dermatol. 2014;134(8):2074–2076. doi:10.1038/jid.2014.24125029322
  • LobodaA, DamulewiczM, PyzaE, JozkowiczA, DulakJ. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–3247. doi:10.1007/s00018-016-2223-027100828
  • GozzelinoR, JeneyV, SoaresMP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323–354. doi:10.1146/annurev.pharmtox.010909.10560020055707
  • ZhangS, YiX, SuX, et al. Ginkgo biloba extract protects human melanocytes from H2 O2 -induced oxidative stress by activating Nrf2. J Cell Mol Med. 2019;23(8):5193–5199. doi:10.1111/jcmm.1439331148371
  • JiangW, LiS, ChenX, et al. Berberine protects immortalized line of human melanocytes from H2O2-induced oxidative stress via activation of Nrf2 and Mitf signaling pathway. J Dermatol Sci. 2019;94(1):236–243. doi:10.1016/j.jdermsci.2019.03.00730987854
  • SinghA, VenkannagariS, OhKH, et al. {Wu, 2021 #119}. ACS Chem Biol. 2016;11(11):3214–3225. doi:10.1021/acschembio.6b0065127552339
  • HuY, HuangJ, LiY, et al. Cistanche deserticola polysaccharide induces melanogenesis in melanocytes and reduces oxidative stress via activating NRF2/HO-1 pathway. J Cell Mol Med. 2020;24(7):4023–4035. doi:10.1111/jcmm.1503832096914
  • LiXS, TangXY, SuW, LiX. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway. Immunopharmacol Immunotoxicol. 2020;42(6):594–603. doi:10.1080/08923973.2020.183595233045867
  • MouK, PanW, HanD, et al. Glycyrrhizin protects human melanocytes from H2O2induced oxidative damage via the Nrf2 dependent induction of HO1. Int J Mol Med. 2019;44(1):253–261. doi:10.3892/ijmm.2019.420031115551