162
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Pro-Angiogenic Effects of Essential Oil from Perilla frutescens and Its Main Component (Perillaldehyde) on Zebrafish Embryos and Human Umbilical Vein Endothelial Cells

, , , , , & show all
Pages 4985-4999 | Published online: 11 Dec 2021

References

  • LinD, WangL, YanS, et al. The role of oxidative stress in common risk factors and mechanisms of cardio-cerebrovascular ischemia and depression. Oxid Med Cell Longev. 2019;2019:2491927. doi:10.1155/2019/249192732148646
  • BoehmeAK, EsenwaC, ElkindMSV. Stroke risk factors, genetics, and prevention. Circ Res. 2017;120:472–495. doi:10.1161/CIRCRESAHA.116.30839828154098
  • YuH, LuK, ZhuJ, et al. Stem cell therapy for ischemic heart diseases. Br Med Bull. 2017;121:135–154. doi:10.1093/bmb/ldw05928164211
  • HeJC, WangL. Progress in research on promoting or inhibitory effect of Chinese medicines on angiogenesis. J Xi’an Jiaotong Univ Med Sci. 2018;39:775–778.
  • NoishikiC, YugeS, AndoK, et al. Live imaging of angiogenesis during cutaneous wound healing in adult zebrafish. Angiogenesis. 2019;22:341–354. doi:10.1007/s10456-018-09660-y30607697
  • FeiY, HouJ, XuanW, et al. The relationship of plasma miR-503 and coronary collateral circulation in patients with coronary artery disease. Life Sci. 2018;207:145–151. doi:10.1016/j.lfs.2018.06.00129870767
  • MaY, MoutonAJ, LindseyML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res. 2018;191:15–28. doi:10.1016/j.trsl.2017.10.00129106912
  • KanazawaM, TakahashiT, IshikawaM, et al. Angiogenesis in the ischemic core: a potential treatment target? J Cereb Blood Flow Metab. 2019;39:753–769. doi:10.1177/0271678X1983415830841779
  • AhmedHM. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules. 2018;24:102. doi:10.3390/molecules24010102
  • YuH, QiuJF, MaLJ, et al. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem Toxicol. 2017;108(Pt B):375–391. doi:10.1016/j.fct.2016.11.02327890564
  • JiaJJ, LiY, MiaoMS. Chemistry pharmacology and application of Perilla China. J Chin Med. 2016;31:1354–1356.
  • HeY, HaoE, XieJ, et al. Research process on pharmacological effect and substance basis of Perilla frutescens. Chin Tradit Herbal Drugs. 2018;49:3957–3968.
  • ZhouQM, QiaoMM, PengC, et al. Study on the vasodilatory activity of volatile oil from Perilla leaves and its active substances. Nat Prod Res Dev. 2019;31:1949–1953+2000.
  • ZhaoX, WangC, MengH, et al. Dalbergia odorifera: a review of its traditional uses, phytochemistry, pharmacology, and quality control. J Ethnopharmacol. 2020;248:112328. doi:10.1016/j.jep.2019.11232831654799
  • LuoJ, TianX, LiuB, et al. Application of essential oil components of aromatic Chinese materia medica in cardiovascular diseases. Chin Tradit Herbal Drugs. 2020;51:245–255.
  • LiN, ZhangZJ, LiXJ, et al. Microcapsules biologically prepared using Perilla frutescens (L.) Britt. essential oil and their use for extension of fruit shelf life. J Sci Food Agric. 2018;98:1033–1041. doi:10.1002/jsfa.855228718920
  • JiWW, LiRP, LiM, et al. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice. Chin J Nat Med. 2014;12:753–759.25443368
  • ZhouQM, ZhuDW, LuoML, et al. Advances in studies on chemical constituents in plants from Perilla and their bioactivities. Chin Arch Trad Chin Med. 2019;37:1826–1831.
  • HeJH, GaoJM, HuangCJ, et al. Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol. 2014;42:35–42. doi:10.1016/j.ntt.2014.01.00624503215
  • LessmanCA. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today. 2011;93:268–280. doi:10.1002/bdrc.2021221932435
  • ZhangJ, LiuM, HuangM, et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res. 2019;144:292–305. doi:10.1016/j.phrs.2019.04.02131048033
  • BaQ, DuanJ, TianJQ, et al. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish. Acta Pharmacol Sin. 2013;34:1101–1107. doi:10.1038/aps.2013.4823708556
  • PanJ, WangX, LiD, et al. MSCs inhibits the angiogenesis of HUVECs through the miR-211/Prox1 pathway. J Biochem. 2019;166:107–113. doi:10.1093/jb/mvz03831143937
  • LeeYC, ChangYC, WuCC, et al. Hypoxia-preconditioned human umbilical vein endothelial cells protect against neurovascular damage after hypoxic ischemia in neonatal brain. Mol Neurobiol. 2018;55:7743–7757. doi:10.1007/s12035-018-0867-529460267
  • ZhouF, LiuF, LiuJ, et al. Stachydrine promotes angiogenesis by regulating the VEGFR2/MEK/ERK and mitochondrial-mediated apoptosis signaling pathways in human umbilical vein endothelial cells. Biomed Pharmacother. 2020;131:110724. doi:10.1016/j.biopha.2020.11072432920518
  • QinXY, WangYN, LiuHF, et al. Anti-cancer activities of metal-based complexes by regulating the VEGF/VEGFR2 signaling pathway and apoptosis-related factors Bcl-2, Bax, and caspase-9 to inhibit angiogenesis and induce apoptosis. Metallomics. 2020;12:92–103. doi:10.1039/C9MT00248K31750487
  • Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, Part I. Beijing, China: China Medical Science Press; 2015:339–340.
  • HeYL, ShiJY, PengC, et al. Angiogenic effect of motherwort (Leonurus japonicus) alkaloids and toxicity of motherwort essential oil on zebrafish embryos. Fitoterapia. 2018;128:36–42. doi:10.1016/j.fitote.2018.05.00229729400
  • DonaduMG, Peralta-RuizY, UsaiD, et al. Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant candida strains. J Fungi (Basel). 2021;7:383. doi:10.3390/jof705038334069001
  • BorgesRS, OrtizBLS, PereiraACM, et al. Rosmarinus officinalis essential oil: a review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol. 2019;229:29–45. doi:10.1016/j.jep.2018.09.03830287195
  • CannasS, UsaiD, PinnaA, et al. Essential oils in ocular pathology: an experimental study. J Infect Dev Ctries. 2015;9:650–654. doi:10.3855/jidc.684226142676
  • LombreaA, AntalD, ArdeleanF, et al. A recent insight regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil. Int J Mol Sci. 2020;21:9653. doi:10.3390/ijms21249653
  • AljaafariMN, AlAliAO, BaqaisL, et al. An overview of the potential therapeutic applications of essential oils. Molecules. 2021;26:628. doi:10.3390/molecules2603062833530290
  • ChenZ, ZhangC, GaoF, et al. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol. 2018;119:309–325. doi:10.1016/j.fct.2018.02.05029486278
  • ZengP, GuoZ, ZengX, et al. Chemical, biochemical, preclinical and clinical studies of Ganoderma lucidum polysaccharide as an approved drug for treating myopathy and other diseases in China. J Cell Mol Med. 2018;22:3278–3297. doi:10.1111/jcmm.1361329691994
  • YangD, LiuY, ZhangL. Tremella polysaccharide: the molecular mechanisms of its drug action. Prog Mol Biol Transl Sci. 2019;163:383–421. doi:10.1016/bs.pmbts.2019.03.00231030755
  • ChenJ, ZhangX, LiuX, et al. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol. 2019;856:172418. doi:10.1016/j.ejphar.2019.17241831132356
  • XuZM, HuangF, HuangWQ. Angiogenic lncRNAs: a potential therapeutic target for ischaemic heart disease. Life Sci. 2018;211:157–171. doi:10.1016/j.lfs.2018.09.02230219334
  • BuL, DaiO, ZhouF, et al. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother. 2020;132:110855. doi:10.1016/j.biopha.2020.11085533059257
  • SindhuR, ManonmaniHK. L-Asparaginase induces intrinsic mitochondrial-mediated apoptosis in human gastric adenocarcinoma cells and impedes tumor progression. Biochem Biophys Res Commun. 2018;503:2393–2399. doi:10.1016/j.bbrc.2018.06.16729966654
  • GuM, LiL, ZhangZ, et al. PFKFB3 promotes proliferation, migration and angiogenesis in nasopharyngeal carcinoma. J Cancer. 2017;8:3887–3896. doi:10.7150/jca.1911229151977
  • BottaroDP, LiottaLA. Cancer: out of air is not out of action. Nature. 2003;423:593–595. doi:10.1038/423593a12789320
  • AaldersKC, TryfonidisK, SenkusE, et al. Anti-angiogenic treatment in breast cancer: facts, successes, failures and future perspectives. Cancer Treat Rev. 2017;53:98–110. doi:10.1016/j.ctrv.2016.12.00928088074
  • YuanX, HanL, FuP, et al. Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. Lab Invest. 2018;98:783–798. doi:10.1038/s41374-018-0025-829463877
  • KerbelRS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–2049. doi:10.1056/NEJMra070659618463380
  • LiSN, LiP, LiuWH, et al. Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother. 2019;120:109538. doi:10.1016/j.biopha.2019.10953831629250
  • LiangZ, ChiYJ, LinGQ, et al. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3485–3492. doi:10.26355/eurrev_201806_1517529917203
  • ZaitounIS, WintheiserCM, JamaliN, et al. Bcl-2 expression in pericytes and astrocytes impacts vascular development and homeostasis. Sci Rep. 2019;9:9700. doi:10.1038/s41598-019-45915-431273232
  • TaoSC, YuanT, RuiBY, et al. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics. 2017;7:733–750. doi:10.7150/thno.1745028255363
  • GabelliniC, LucaTD, TrisciuoglioD, et al. BH4 domain of bcl-2 protein is required for its proangiogenic function under hypoxic condition. Carcinogenesis. 2013;34:2558–2567. doi:10.1093/carcin/bgt24223836782
  • WuYL, XiaLJ, LiJY, et al. CecropinXJ inhibits the proliferation of human gastric cancer BGC823 cells and induces cell death in vitro and in vivo. Int J Oncol. 2015;46:2181–2193. doi:10.3892/ijo.2015.293325826779
  • KaushalGP, LiuL, KaushalV, et al. Regulation of caspase-3 and −9 activation in oxidant stress to RTE by forkhead transcription factors, Bcl-2 proteins, and MAP Kinases. Am J Physiol Renal Physiol. 2004;287:F1258–F1268. doi:10.1152/ajprenal.00391.200315304372