351
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Protective Effects of Mogroside V on Oxidative Stress Induced by H2O2 in Skin Fibroblasts

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 4901-4909 | Published online: 01 Dec 2021

References

  • LiQ, BaiD, QinL, et al. Protective effect of d-tetramannuronic acid tetrasodium salt on UVA-induced photo-aging in HaCaT cells. Biomed Pharmacother. 2020;126:110094.32200257
  • WangCY, JiangM, HouGY, et al. Protective effect of Xiaocaihu decoction on oxidative stress injury of human skin fibroblasts induced by hydrogen peroxide. Chin J Lab Diagn. 2018;22(06):1074–1077.
  • SavoiaP, RainaG, CamilloL, et al. Anti-oxidative effects of 17 beta-estradiol and genistein in human skin fibroblasts and keratinocytes. J Dermatol Sci. 2018;92(1):62–77. doi:10.1016/j.jdermsci.2018.07.00730104108
  • LephartED. Skin aging and oxidative stress: equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev. 2016;31:36–54. doi:10.1016/j.arr.2016.08.00127521253
  • ColleenRR, NavdeepSC. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015;33:8–13.25305438
  • NikolaG. Anti-aging and aging factors in life. The role of free radicals. Radiat Phys Chem. 2007;76(10):1577–1586.
  • LynchMD, WattFM. Fibroblast heterogeneity: implications for human disease. J Clin Invest. 2018;128(1):26–35. doi:10.1172/JCI9355529293096
  • GriffinMF, desJardins-ParkHE, MascharakS, BorrelliMR, LongakerMT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech. 2020;13(6). doi:10.1242/dmm.044164
  • HeFT, ChenJY, XuJY, et al. Research progress of oxidative stress cell model. Sci Technol Food Indus. 2019;40(07):341–345.
  • Zhang B, Xia ZL, Zhao XM, et al. Establishment and evaluation of oxidative stress models. Chinese Journal of Clinical Rehabilitation. 2006(44):112–114.
  • Jiang CY, Li M, Feng XW. Development and research progress of Siraitia Grosvenorii. Jiangsu Condiment and Subsidiary Food. 2021(01):4–8. doi:10.16782/j.cnki.32-1235/ts.2021.01.002
  • ZhangQL, HuangJ, WuZH, et al. Research overview on pharmacology and development and application of Siraitia grosvenori. J Pharma Res. 2017;36(3):164–165+186.
  • HuangSX, ZhouXL, MoJF, et al. Study on the separation, identification and content determination of mogrosides IIA and its hypoglycemic and antioxidant activities. J Guangxi Normal Univ. 2019;37(03):132–141.
  • JiangJL, LiangJ, YangYY, et al. Research progress on pharmacological and toxicological effects of Siraitia grosvenori. Mod Prev Med. 2020;47(12):2246–2248+2262.
  • DingXS, LinW, XuWX, et al. Research progress of muscovore saponins against exercise fatigue. J Phys Educ Institute Shanxi Teach Univ. 2011;26(3):120–122+126.
  • QiX-Y, ChenW-J, ZhangL-Q, XieB-J. Mogrosides extract from Siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice. Nutr Res. 2008;28(4):278–284. doi:10.1016/j.nutres.2008.02.00819083420
  • JianZ, Cheng-chengW, Yu-liL, et al. Antioxidant activity of mogroside extract of Siraitia grosvenorii fruits. Food Sci Technol. 2015;40(3):225–231.
  • TangYP, ZhangSP, ZhangST, et al. Research progress on bioactive components, pharmacological effects and product processing of Siraitia grosvenori. Beverage Industr. 2020;23(06):67–70.
  • ZhuH, LiuH, QiX, ChenQ, ZhangY. Protective effect of mogroside extract on ethanol-induced L-02 hepatocytes damage. J Chin Inst Food Sci Technol. 2015;15(1):13–18.
  • WuJ, WangH, FengZ. Protective effect of mogroside V on ethanol-induced fatty liver in rats via Nrf2-relevant antioxidative signal path. Latin Am J Pharm. 2020;39(12):2416–2423.
  • XiaoT, LingM, XuH, et al. NF-κB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol. 2019;377:114616. doi:10.1016/j.taap.2019.11461631185220
  • CaiL, QinX, XuZ, et al. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega. 2019;4(7):12036–12042. doi:10.1021/acsomega.9b0114231460316
  • ZhangLW, BäumerW, Monteiro-RiviereNA. Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine. 2011;6(5):777–791. doi:10.2217/nnm.11.7321793671
  • CrucianiS, TrentaM, RassuG, et al. Identifying a role of red and white wine extracts in counteracting skin aging: effects of antioxidants on fibroblast behavior. Antioxidants. 2021;10(2):227. doi:10.3390/antiox1002022733546215
  • SerafiniM, TestaMF, VillañoD, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–774. doi:10.1016/j.freeradbiomed.2008.11.02319135520
  • LadoC, ThenM, VargaI, SzőkeÉ, SzentmihályidK. Antioxidant property of volatile oils determined by the ferric reducing ability. Zeitschrift für Naturforschung C. 2004;59(5–6):354–358. doi:10.1515/znc-2004-5-611
  • BlumbergJ. Use of biomarkers of oxidative stress in research studies. J Nutr. 2004;134(11):3188S–3189S. doi:10.1093/jn/134.11.3188S15514301
  • LiHX, FanWF, ZhengYL, et al. Textual research on the materia medica of Grosvenor. Lishizhen Med Materia Medica Res. 2020;31(06):1376–1379.
  • ChenWJ, WangJ, QiXY, XieBJ. The antioxidant activities of natural sweeteners, mogrosides, from fruits of Siraitia grosvenori. Int J Food Sci Nutr. 2009;58(7):548–556. doi:10.1080/09637480701336360
  • XuQ, ChenSY, DengLD, FengLP, HuangLZ, YuRR. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells. Braz J Med Biol Res. 2013;46(11):949–955. doi:10.1590/1414-431X2013316324270904
  • LiuH, WangC, QiX, ZouJ, SunZ. Antiglycation and antioxidant activities of mogroside extract from Siraitia grosvenorii (Swingle) fruits. J Food Sci Technol. 2018;55(5):1880–1888. doi:10.1007/s13197-018-3105-229666541
  • NieJ, YanK, SuiL, et al. Mogroside V improves porcine oocyte in vitro maturation and subsequent embryonic development. Theriogenology. 2020;141:35–40. doi:10.1016/j.theriogenology.2019.09.01031518726
  • NieJ, SuiL, ZhangH, et al. Mogroside V protects porcine oocytes from in vitro ageing by reducing oxidative stress through SIRT1 upregulation. Aging. 2019;11(19):8362–8373. doi:10.18632/aging.10232431586990
  • Wen HuaL, Qi XuanC, JingM, TongW. Red and black rice decrease atherosclerotic plaque formation and increase antioxidant status in rabbits. J Nutr. 2001;131(5):1421–1426. doi:10.1093/jn/131.5.142111340093
  • DankoMJ, KozlowskiJ. Mutation accumulation may only be a minor force in shaping life-history traits, even when reproduction is sexual. PLoS One. 2012;7(10):e48302.23118976
  • Tzung-HanC, Hsiou-YuD, Leong-PerngC, Jing-YaoL, Chia-HuaL. Novel phenolic glucoside, origanoside, protects against oxidative damage and modulates antioxidant enzyme activity. Food Res Int. 2011;44(5):1496–1503. doi:10.1016/j.foodres.2011.03.041
  • RajasekaranNS, SathyanarayananS, DevarajNS, DevarajH. Chronic depletion of glutathione (GSH) and minimal modification of LDL in vivo: its prevention by glutathione mono ester (GME) therapy. Biochimica Et Biophysica Acta Mol Basis Dis. 2005;1741(1–2):103–112. doi:10.1016/j.bbadis.2004.11.025
  • KwonK-R, AlamMB, ParkJ-H, KimT-H, LeeS-H. Attenuation of UVB-induced photo-aging by polyphenolic-rich spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients. 2019;11(6):1341. doi:10.3390/nu11061341
  • PressiG, BertaiolaO, GuarnerioC, et al. In vitro cultured melissa officinalis cells as effective ingredient to protect skin against oxidative stress, blue light, and infrared irradiations damages. Cosmetics. 2021;8(1):23. doi:10.3390/cosmetics8010023
  • SongHX, NamHL, SooNP. Atractyligenin, a terpenoid isolated from coffee silverskin, inhibits cutaneous photoaging. J Photochem Photobiol B. 2019;194:166–173.30981089