285
Views
6
CrossRef citations to date
0
Altmetric
Review

New Progress in Improving the Delivery Methods of Bisphosphonates in the Treatment of Bone Tumors

ORCID Icon &
Pages 4939-4959 | Published online: 10 Dec 2021

References

  • SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.2166033538338
  • FornettiJ, WelmAL, StewartSA. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018;33(12):2099–2113. doi:10.1002/jbmr.361830476357
  • GdowskiAS, RanjanA, VishwanathaJK. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. J Exper Clin Cancer Res. 2017;36(1). doi:10.1186/s13046-017-0578-1
  • MundyGR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–593. doi:10.1038/nrc86712154351
  • ColemanRE. Impact of bone-targeted treatments on skeletal morbidity and survival in breast cancer. Oncology. 2016;30(8):695–702.27528238
  • ColemanRE. Bisphosphonates: clinical experience. Oncologist. 2004;9(S4):14–27. doi:10.1634/theoncologist.9-90004-14
  • SaadF, MuldersP. Bisphosphonate anticancer activity in prostate cancer and other genitourinary cancers. Anticancer Agents Med Chem. 2012;12(2):129. doi:10.2174/18715201279901499521864229
  • KeizmanD, Ish-ShalomM, PiliR, et al. Bisphosphonates combined with sunitinib may improve the response rate, progression free survival and overall survival of patients with bone metastases from renal cell carcinoma. Eur J Cancer. 2012;48(7):1031–1037. doi:10.1016/j.ejca.2012.02.05022409947
  • MenshawyA, MattarO, AbdulkarimA, et al. Denosumab versus bisphosphonates in patients with advanced cancers-related bone metastasis: systematic review and meta-analysis of randomized controlled trials. Support Care Cancer. 2018;26(4):1029–1038. doi:10.1007/s00520-018-4060-129387997
  • KuźnikA, Październiok-HolewaA, JewulaP, et al. Bisphosphonates-much more than only drugs for bone diseases. Eur J Pharmacol. 2020;866:172773. doi:10.1016/j.ejphar.2019.17277331705903
  • ModiND, LentzschS. Bisphosphonates as antimyeloma drugs. Leukemia. 2012;26(4):589–594. doi:10.1038/leu.2011.28222005788
  • RussellRGG. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2–19. doi:10.1016/j.bone.2011.04.02221555003
  • TerposE, ZamagniE, LentzschS, et al. Treatment of multiple myeloma-related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021;22(3):e119–e130. doi:10.1016/S1470-2045(20)30559-333545067
  • TerposE, ChristoulasD, GavriatopoulouM. Biology and treatment of myeloma related bone disease. Metabolism. 2018;80:80–90. doi:10.1016/j.metabol.2017.11.01229175022
  • YoungRN, GrynpasMD. Targeting therapeutics to bone by conjugation with bisphosphonates. Curr Opin Pharmacol. 2018;40:87–94. doi:10.1016/j.coph.2018.03.01029626715
  • TerposE, SezerO, CroucherPI, et al. The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. Ann Oncol. 2009;20(8):1303–1317. doi:10.1093/annonc/mdn79619465418
  • RosenLS, GordonD, KaminskiM, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a Phase III, double-blind, comparative trial. Cancer J. 2001;7(5):377–387.11693896
  • KimJH, KangH-M, YuS-B, et al. Cytoprotective effect of flavonoid-induced autophagy on bisphosphonate mediated cell death in osteoblast. J Cell Biochem. 2018;119(7):5571–5580. doi:10.1002/jcb.2672829380898
  • DorffTB, AgarwalN. Bone-targeted therapies to reduce skeletal morbidity in prostate cancer. Asian J Androl. 2018;20(3):215–220. doi:10.4103/aja.aja_12_1829553053
  • WangY, MetcalfCA, ShakespeareWC, et al. Bone-targeted 2,6,9-trisubstituted purines: novel inhibitors of Src tyrosine kinase for the treatment of bone diseases. Bioorg Med Chem Lett. 2003;13(18):3067–3070. doi:10.1016/S0960-894X(03)00648-612941335
  • WangD, MillerS, KopeckovaP, et al. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev. 2005;57(7):1049–1076. doi:10.1016/j.addr.2004.12.01115876403
  • SinghT, KaurV, KumarM, et al. The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target. 2014;23(1):1–15. doi:10.3109/1061186X.2014.95066825203856
  • ColeLE, Vargo-GogolaT, RoederRK. Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials. 2014;35(7):2312–2321. doi:10.1016/j.biomaterials.2013.11.07724360718
  • HodginsNO, WangJT, Al-JamalKT. Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδ T cells for anticancer immunotherapy. Adv Drug Deliv Rev. 2017;114:143–160. doi:10.1016/j.addr.2017.07.00328694026
  • KootalaS, ZhangY, GhalibS, et al. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro. Biomater Sci. 2016;4(2):250–254. doi:10.1039/C5BM00355E26610690
  • GradisharWJ, MoranMS, AbrahamJ. NCCN clinical practice guidelines in oncology version 3.2021. Breast Cancer. 2018;16(7):874–901.
  • ColeLE, Vargo-GogolaT, RoederRK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99:12–27. doi:10.1016/j.addr.2015.10.00526482186
  • OtakaA, YamaguchiT, SaishoR, et al. Bone‐targeting phospholipid polymers to solubilize the lipophilic anticancer drug. J Biomed Mater Res A. 2020;108(10):2090–2099. doi:10.1002/jbm.a.3696832323471
  • LiX, ValdesSA, AlzhraniRF, et al. Zoledronic acid-containing nanoparticles with minimum premature release show enhanced activity against extraskeletal tumor. ACS Appl Mater Interfaces. 2019;11(7):7311–7319. doi:10.1021/acsami.8b1658830689348
  • VanderburghJ, HillJL, GuptaMK, et al. Tuning ligand density to optimize pharmacokinetics of targeted nanoparticles for dual protection against tumor-induced bone destruction. ACS Nano. 2020;14(1):311–327. doi:10.1021/acsnano.9b0457131894963
  • KretlowJD, MikosAG. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 2007;13(5):927–938. doi:10.1089/ten.2006.039417430090
  • VegaSL, KwonMY, BurdickJA. Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater. 2017;33:59–75. doi:10.22203/eCM.v033a0528138955
  • SwamiA, ReaganMR, BastoP, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Nat Acad Sci. 2014;111(28):10287–10292. doi:10.1073/pnas.140133711124982170
  • RaichurV, VemulaKD, BhadriN, et al. Zolendronic acid-conjugated PLGA ultrasmall nanoparticle loaded with methotrexate as a supercarrier for bone-targeted drug delivery. AAPS PharmSciTech. 2017;18(6):2227–2239. doi:10.1208/s12249-016-0691-z28070850
  • ChenS, LiuT-I, ChuangC-L, et al. Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J Mater Chem B. 2020;8(17):3789–3800. doi:10.1039/D0TB00046A32150202
  • MillerK, Eldar-BoockA, PolyakD, et al. Antiangiogenic antitumor activity of HPMA copolymer–paclitaxel–alendronate conjugate on breast cancer bone metastasis mouse model. Mol Pharm. 2011;8(4):1052–1062. doi:10.1021/mp200083n21545170
  • NguyenTDT, PitchaimaniA, AryalS. Engineered nanomedicine with alendronic acid corona improves targeting to osteosarcoma. Sci Rep. 2016;6(1). doi:10.1038/srep36707
  • XuY, ZhangZ, WangH, et al. Zoledronic Acid-loaded hybrid hyaluronic acid/polyethylene glycol/nano-hydroxyapatite nanoparticle: novel fabrication and safety verification. Front Bioeng Biotech. 2021;9:629928. doi:10.3389/fbioe.2021.629928
  • MekhailGM, KamelAO, AwadGA, et al. Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy. Nanomedicine. 2016;11(17):2251–2273. doi:10.2217/nnm-2016-015127527003
  • ChenTT, YiJ-T, Zhao-Y-Y, et al. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J Am Chem Soc. 2018;140(31):9912–9920. doi:10.1021/jacs.8b0445730008215
  • WuMX, YangYW. Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134. doi:10.1002/adma.201606134
  • MuguruzaAR, de LuisRF, IglesiasN, et al. Encapsulation of β-alanine model amino-acid in zirconium(IV) metal organic frameworks: defect engineering to improve host guest interactions. J Inorg Biochem. 2020;205:110977. doi:10.1016/j.jinorgbio.2019.11097731926376
  • AuKM, SatterleeA, MinY, et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials. 2016;82:178–193. doi:10.1016/j.biomaterials.2015.12.01826763733
  • PangY, FuY, LiC, et al. Metal–organic framework nanoparticles for ameliorating breast cancer-associated osteolysis. Nano Lett. 2019;20(2):829–840. doi:10.1021/acs.nanolett.9b02916
  • LiC, ZhangY, ChenG, et al. Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater. 2017;29(13):1605754. doi:10.1002/adma.201605754
  • SunW, HanY, LiZ, et al. Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir. 2016;32(36):9237–9244. doi:10.1021/acs.langmuir.6b0222827531422
  • LalatonneY, MonteilM, JouniH, et al. Superparamagnetic bifunctional bisphosphonates nanoparticles: a potential MRI contrast agent for osteoporosis therapy and diagnostic. J Osteoporos. 2010;2010:1–7. doi:10.4061/2010/747852
  • DlaminiN, MukayaHE, Van ZylRL, et al. Synthesis, characterization, kinetic drug release and anticancer activity of bisphosphonates multi-walled carbon nanotube conjugates. Mater Sci Eng C. 2019;104:109967. doi:10.1016/j.msec.2019.109967
  • WrightJE, GittensSA, BansalG, et al. A comparison of mineral affinity of bisphosphonate-protein conjugates constructed with disulfide and thioether linkages. Biomaterials. 2006;27(5):769–784. doi:10.1016/j.biomaterials.2005.06.01216055182
  • MurphyMB, HartgerinkJD, GoepferichA, et al. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules. 2007;8(7):2237–2243. doi:10.1021/bm070121s17530891
  • DongX, ZouS, GuoC, et al. Multifunctional redox-responsive and CD44 receptor targeting polymer-drug nanomedicine based curcumin and alendronate: synthesis, characterization and in vitro evaluation. Artif Cells, Nanomed Biotechnol. 2018;46(sup1):168–177. doi:10.1080/21691401.2017.141639029239219
  • LiuT, RomanovaS, WangS, et al. Alendronate-modified polymeric micelles for the treatment of breast cancer bone metastasis. Mol Pharm. 2019;16(7):2872–2883. doi:10.1021/acs.molpharmaceut.8b0134331150251
  • SchottS, ValletS, TowerRJ, et al. In vitro and in vivo toxicity of 5-FdU-alendronate, a novel cytotoxic bone-seeking duplex drug against bone metastasis. Invest New Drugs. 2015;33(4):816–826. doi:10.1007/s10637-015-0253-325986684
  • YuanY, SongJ-X, ZhangM-N, et al. A multiple drug loaded, functionalized pH-sensitive nanocarrier as therapeutic and epigenetic modulator for osteosarcoma. Sci Rep. 2020;10(1):1. doi:10.1038/s41598-020-72552-z.31913322
  • ZhaoL, BiD, QiX, et al. Polydopamine-based surface modification of paclitaxel nanoparticles for osteosarcoma targeted therapy. Nanotechnology. 2019;30(25):255101. doi:10.1088/1361-6528/ab055f30736019
  • BaiS, ChengY, LiuDZ, et al. Bone-targeted PAMAM nanoparticle to treat bone metastases of lung cancer. Nanomedicine. 2020;15(9):833–849. doi:10.2217/nnm-2020-002432163008
  • AkbarzadehA, Rezaei-SadabadyR, DavaranS, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi:10.1186/1556-276X-8-10223432972
  • TaT, PorterTM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1–2):112–125. doi:10.1016/j.jconrel.2013.03.03623583706
  • La-beckNM, LiuX, ShmeedaH, et al. Repurposing amino-bisphosphonates by liposome formulation for a new role in cancer treatment. Semin Cancer Biol. 2019;68:175–185.31874280
  • Dos Santos FerreiraD, Jesus de Oliveira PintoBL, KumarV, et al. Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice. Nanomedicine. 2017;13(5):1693–1701. doi:10.1016/j.nano.2017.03.00528343016
  • SongH, ZhangJ, LiuX, et al. Development of a bone targeted thermosensitive liposomal doxorubicin formulation based on a bisphosphonate modified non-ionic surfactant. Pharm Dev Technol. 2016;21(6):1–8.
  • WuH, LuoY, XuD, et al. Low molecular weight heparin modified bone targeting liposomes for orthotopic osteosarcoma and breast cancer bone metastatic tumors. Int J Biol Macromol. 2020;164:2583–2597.32795579
  • DolciLS, PanzavoltaS, TorricelliP, et al. Modulation of Alendronate release from a calcium phosphate bone cement: an in vitro osteoblast-osteoclast co-culture study. Int J Pharm. 2019;554:245–255. doi:10.1016/j.ijpharm.2018.11.02330423416
  • ChangQ, GengR, WangS, et al. DOPA-based paclitaxel-loaded liposomes with modifications of transferrin and alendronate for bone and myeloma targeting. Drug Deliv. 2016;23(9):3629–3638. doi:10.1080/10717544.2016.121498927749106
  • MarraM, SalzanoG, LeonettiC, et al. Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine. 2011;7(6):955–964. doi:10.1016/j.nano.2011.03.00421453789
  • AnadaT, TakedaY, HondaY, et al. Synthesis of calcium phosphate-binding liposome for drug delivery. Bioorg Med Chem Lett. 2009;19(15):4148–4150. doi:10.1016/j.bmcl.2009.05.11719523821
  • ShiX, WangY, RenL, et al. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm Res. 2009;26(2):422–430. doi:10.1007/s11095-008-9759-018979188
  • HanB, WangHT, LiuHY, et al. Preparation of pingyangmycin PLGA microspheres and related in vitro/in vivo studies. Int J Pharm. 2010;398(1–2):130–136. doi:10.1016/j.ijpharm.2010.07.04520688141
  • Hernán Pérez De La OssaD, LigrestiA, Gil-AlegreME, et al. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: development, characterization and in vitro evaluation of their antitumoral efficacy. J Control Release. 2012;161(3):927–932. doi:10.1016/j.jconrel.2012.05.00322580111
  • BostromMP, SalehKJ, EinhornTA. Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop Clin North Am. 1999;30(4):647–658. doi:10.1016/S0030-5898(05)70117-610471769
  • WuH, XuY, LiuG,et al. Emulsion cross-linked chitosan/nanohydroxyapatite microspheres for controlled release of alendronate. J Mater Sci Mater Med. 2014;25(12):2649–2658. doi:10.1007/s10856-014-5289-y25080396
  • WuH, LeiP, LiuG, et al. Reconstruction of large-scale defects with a novel hybrid scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded chitosan microsphere: in vitro and in vivo studies. Sci Rep. 2017;7(1):1–4.28127051
  • KimCW, YunYP, LeeHJ, et al. In situ fabrication of alendronate-loaded calcium phosphate microspheres: controlled release for inhibition of osteoclastogenesis. J Control Release. 2010;147(1):45–53. doi:10.1016/j.jconrel.2010.06.01620600398
  • CattaliniJP, RoetherJ, HoppeA, et al. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. Biomed Mater. 2016;11(6):065003. doi:10.1088/1748-6041/11/6/06500327767020
  • BellRV, RochfordLA, de RosalesRTM, et al. Fabrication of calcium phosphate microcapsules using emulsion droplets stabilized with branched copolymers as templates. J Mater Chem B. 2015;3(27):5544–5552. doi:10.1039/C5TB00893J32262525
  • XingL, EbetinoFH, BoeckmanRK Jr, et al. Targeting anti-cancer agents to bone using bisphosphonates. Bone. 2020;138:115492.32585321
  • FarrellKB, KarpeiskyA, ThammDH, et al. Bisphosphonate conjugation for bone specific drug targeting. Bone Rep. 2018;9:47–60. doi:10.1016/j.bonr.2018.06.00729992180
  • HolmbergAR, LernerUH, AlayiaAA, et al. Development of a novel poly bisphosphonate conjugate for treatment of skeletal metastasis and osteoporosis. Int J Oncol. 2010;37(3):563. doi:10.3892/ijo_0000070520664925
  • VargheseOP, SunW, HilbornJ, et al. In situ cross-linkable high molecular weight hyaluronan−bisphosphonate conjugate for localized delivery and cell-specific targeting: a hydrogel linked prodrug approach. J Am Chem Soc. 2009;131(25):8781–8783. doi:10.1021/ja902857b19499915
  • AgyinJK, SanthammaB, RoySS. Design, synthesis, and biological evaluation of bone-targeted proteasome inhibitors for multiple myeloma. Bioorg Med Chem Lett. 2013;23(23):6455–6458. doi:10.1016/j.bmcl.2013.09.04324119559
  • WangH, XiaoL, TaoJ, et al. Synthesis of a bone-targeted bortezomib with in vivo anti-myeloma effects in mice. Pharmaceutics. 2018;10(3):154. doi:10.3390/pharmaceutics10030154
  • DavidE, CagnolS, GoujonJY, et al. 12b80 – hydroxybisphosphonate linked doxorubicin: bone targeted strategy for treatment of osteosarcoma. Bioconjug Chem. 2019;30(6):1665–1676. doi:10.1021/acs.bioconjchem.9b0021031045351
  • WebsterMR, ZhaoM, RudekMA, et al. Bisphosphonamidate clodronate prodrug exhibits potent anticancer activity in non-small-cell lung cancer cells. J Med Chem. 2011;54(19):6647–6656. doi:10.1021/jm200521a21863853
  • TanakaY, IwasakiM, Murata-HiraiK, et al. Anti-tumor activity and immunotherapeutic potential of a bisphosphonate prodrug. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-05553-0.
  • ZhuJ, HuoQ, XuM, et al. Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale. 2018;10(38):18387–18397. doi:10.1039/C8NR03899F30256367
  • HochdörfferK, Abu AjajK, Schäfer-ObodozieC, et al. Development of novel bisphosphonate prodrugs of doxorubicin for targeting bone metastases that are cleaved pH dependently or by Cathepsin B: synthesis, cleavage properties, and binding properties to hydroxyapatite as well as bone matrix. J Med Chem. 2012;55(17):7502–7515. doi:10.1021/jm300493m22882004
  • MatsumotoK, HayashiK, Murata-HiraiK, et al. Targeting cancer cells with a bisphosphonate prodrug. ChemMedChem. 2016;11(24):2656–2663. doi:10.1002/cmdc.20160046527786425
  • MizutaS, TagodMSO, IwasakiM, et al. Synthesis and immunomodulatory activity of fluorine-containing bisphosphonates. ChemMedChem. 2019;14(4):462–468. doi:10.1002/cmdc.20180076430637982
  • MorsiNM, Nabil ShammaR, Osama EladawyN, et al. Bioactive injectable triple acting thermosensitive hydrogel enriched with nano-hydroxyapatite for bone regeneration: in-vitro characterization, Saos-2 cell line cell viability and osteogenic markers evaluation. Drug Dev Ind Pharm. 2019;45(5):787–804. doi:10.1080/03639045.2019.157218430672348
  • ThavornyutikarnB, WrightPFA, FeltisB, et al. Bisphosphonate activation of crystallized bioglass scaffolds for enhanced bone formation. Mater Sci Eng C Mater Biol Appl. 2019;104:109937. doi:10.1016/j.msec.2019.10993731499956
  • LiM, WangW, ZhuY, et al. Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone. Acta Biomater. 2018;77:365–379. doi:10.1016/j.actbio.2018.07.02830030174
  • LuY, LiM, LiL, et al. High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication. Mat Sci Eng C. 2018;82:225–233. doi:10.1016/j.msec.2017.08.043
  • FarbodK, et al. Controlled release of chemotherapeutic platinum-bisphosphonate complexes from injectable calcium phosphate cements. Tissue Eng Part A. 2016;22(9–10):788–800.27083055