1,306
Views
20
CrossRef citations to date
0
Altmetric
Review

Chemistry, Biosynthesis, Physicochemical and Biological Properties of Rubiadin: A Promising Natural Anthraquinone for New Drug Discovery and Development

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , , , , , , & show all
Pages 4527-4549 | Published online: 03 Nov 2021

References

  • DuvalJ, PecherV, PoujolM, LesellierE. Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crops Prod. 2016;94:812–833. doi:10.1016/j.indcrop.2016.09.056
  • SeiglerDS. Benzoquinones, naphthoquinones, and anthraquinones. In: Plant Secondary Metabolism. Springer; 1998.
  • DaveH, LedwaniL. A review on anthraquinones isolated from Cassia species and their applications. Indian J Natl Prod Resources. 2012;3(2012):291–319.
  • MalikEM, MüllerCE. Anthraquinones as pharmacological tools and drugs. Med Res Rev. 2016;36(4):705–748. doi:10.1002/med.2139127111664
  • HuangQ, LuG, ShenHM, ChungMC, OngCN. Anti‐cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007;27(5):609–630. doi:10.1002/med.2009417022020
  • MurdockK, ChildR, FabioP, et al. Antitumor agents. 1. 1, 4-Bis [(aminoalkyl) amino]-9, 10-anthracenediones. J Med Chem. 1979;22(9):1024–1030. doi:10.1021/jm00195a002490545
  • ShresthaJP, FossoMY, BearssJ, ChangC-WT. Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs. Eur J Med Chem. 2014;77:96–102. doi:10.1016/j.ejmech.2014.02.06024631728
  • ShresthaJP, SubediYP, ChenL, ChangC-WT. A mode of action study of cationic anthraquinone analogs: a new class of highly potent anticancer agents. MedChemComm. 2015;6(11):2012–2022. doi:10.1039/C5MD00314H
  • ChienS-C, WuY-C, ChenZ-W, YangW-C. Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. Evid Based Complement Altern Med. 2015;2015:1–13. doi:10.1155/2015/357357
  • KhanK, KarodiR, SiddiquiA, ThubeS, RubR. Development of anti-acne gel formulation of anthraquinones rich fraction from Rubia cordifolia (Rubiaceae). Int J Appl Res Nat Prod. 2011;4(4):28–36.
  • DavisRH, AgnewPS, ShapiroE. Antiarthritic activity of anthraquinones found in aloe vera for podiatric medicine. J Am Podiatr Med Assoc. 1986;76(2):1–8.
  • Wuthi-udomlertM, KupittayanantP, GritsanapanW. In vitro evaluation of antifungal activity of anthraquinone derivatives of Senna alata. J Health Res. 2010;24(3):117–122.
  • FossoMY, ChanKY, GregoryR, ChangC-WT. Library synthesis and antibacterial investigation of cationic anthraquinone analogs. ACS Comb Sci. 2012;14(3):231–235. doi:10.1021/co200207522324350
  • WinterR, CornellKA, JohnsonLL, IgnatushchenkoM, HinrichsDJ, RiscoeMK. Potentiation of the antimalarial agent rufigallol. Antimicrob Agents Chemother. 1996;40(6):1408–1411. doi:10.1128/AAC.40.6.14088726010
  • TikhomirovAS, ShtilAA, ShchekotikhinAE. Advances in the discovery of anthraquinone-based anticancer agents. Recent Pat Anticancer Drug Discov. 2018;13(2):159–183. doi:10.2174/157489281366617120612311429210664
  • RaoGMM, RaoCV, PushpangadanP, ShirwaikarA. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. J Ethnopharmacol. 2006;103(3):484–490. doi:10.1016/j.jep.2005.08.07316213120
  • ShiJ, RenX, WangJ, WeiX, LiuB, JiaT. Effects of the salt-processing method on the pharmacokinetics and tissue distribution of orally administered Morinda officinalis how. Extract J Analyt Methods Chem. 2020;2020:1–11.
  • PatelV, PatelR. Simultaneous analysis and quantification of markers of manjisthadi churna using high performance thin layer chromatography. Indian J Pharm Sci. 2013;75(1):106. doi:10.4103/0250-474X.11354123901170
  • ZhangJ, ZhangZ, BaoJ, et al. Jia-Jian-Di-Huang-Yin-Zi decoction reduces apoptosis induced by both mitochondrial and endoplasmic reticulum caspase12 pathways in the mouse model of Parkinson’s disease. J Ethnopharmacol. 2017;203:69–79. doi:10.1016/j.jep.2016.12.05328163115
  • QinL, HanT, ZhangQ, et al. Antiosteoporotic chemical constituents from Er-Xian Decoction, a traditional Chinese herbal formula. J Ethnopharmacol. 2008;118(2):271–279. doi:10.1016/j.jep.2008.04.00918501540
  • BhattP, KushwahA. Rubia cordifolia overview: a new approach to treat cardiac disorders. Int J Drug Dev Res. 2013;5(2):47–54.
  • OjhaJK, DwivediKN, ChaurasiyaAK. Effect of Rubia cordifolia on non healing diabetic foot ulcer. Nat Sem Trad Med Plants Skin Care. 1994:17.
  • GogaṭeVU. Ramkrishnan S (editor). Ayurvedic Pharmacology and Therapeutic Uses of Medicinal Plants (Dravya-gunavignyan). Mumbai: Swami Prakashananda Ayurveda Research Centre; 2000.
  • LodiaS, KansalaL. Antioxidant activity of Rubia cordifolia against lead toxicity. Int J Pharma Sci Res. 2012;3(7):2224.
  • TripathiYB, SinghAV. Role of Rubia cordifolia Linn. in radiation protection. Future Med Chem. 2007;12(7):627–644.
  • KarodiR, JadhavM, RubR, BafnaA. Evaluation of the wound healing activity of a crude extract of Rubia cordifolia L. (Indian madder) in mice. Int J Appl Res Nat Prod. 2009;2(2):12–18.
  • PrajapatiSN, ParmarKA. Anti-viral and in-vitro free radical scavenging activity of leaves of Rubia cordifolia. Int J Phytomed. 2011;3(1):98.
  • TripathiY, SharmaM, ManickamM. Rubiadin, a new antioxidant from Rubia cordifolia. Indian J Biochem Biophys. 1997;34(3):302–306.9425750
  • TakanoT, KondoT, NakatsuboF. Facile synthesis of rubiadin by microwave heating. J Wood Sci. 2006;52(1):90–92. doi:10.1007/s10086-005-0727-6
  • PengZ, FangG, PengF, et al. Effects of Rubiadin isolated from Prismatomeris connata on anti‐hepatitis B virus activity in vitro. Phytother Res. 2017;31(12):1962–1970. doi:10.1002/ptr.594529044868
  • National Center for Biotechnology Information. PubChem compound summary for CID 124062, Rubiadin. Avaiable from: https://pubchem.ncbi.nlm.nih.gov/compound/Rubiadin. Accessed October 20, 2021.
  • LipinskiCA, LombardoF, DominyBW, FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi:10.1016/S0169-409X(96)00423-1
  • ZhangM-Q, WilkinsonB. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol. 2007;18(6):478–488. doi:10.1016/j.copbio.2007.10.00518035532
  • ShuklaV, AsthanaS, GuptaP, DwivediPD, TripathiA, DasM. Toxicity of naturally occurring anthraquinones. In: Advances in Molecular Toxicology. Vol. 11. Elsevier; 2017.
  • VermaA, MahalwalV, KumarB. Antiepileptic activity of rubiadin isolated from the roots of Rubia cordifolia in mice. Int J Pharma Sci Res. 2019;10:3022–3028.
  • TianW, WangC, LiD, HouH. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem. 2020;12(7):627–644.32175770
  • CognoIS, GilardiP, CominiL, Núñez-MontoyaSC, CabreraJL, RivarolaVA. Natural photosensitizers in photodynamic therapy: in vitro activity against monolayers and spheroids of human colorectal adenocarcinoma SW480 cells. Photodiagnosis Photodyn Ther. 2020;31:101852. doi:10.1016/j.pdpdt.2020.10185232585403
  • CominiL, FernandezI, VittarNR, MontoyaSN, CabreraJ, RivarolaV. Photodynamic activity of anthraquinones isolated from Heterophyllaea pustulata Hook f. (Rubiaceae) on MCF-7c3 breast cancer cells. Phytomedicine. 2011;18(12):1093–1095. doi:10.1016/j.phymed.2011.05.00821665453
  • VittarNBR, CominiL, FernadezIM, et al. Photochemotherapy using natural anthraquinones: Rubiadin and Soranjidiol sensitize human cancer cell to die by apoptosis. Photodiagnosis Photodyn Ther. 2014;11(2):182–192. doi:10.1016/j.pdpdt.2014.02.00224561303
  • ChiouC-T, HsuR-Y, LinL-C. Isolation and cytotoxic effect of anthraquinones from Morinda umbellata. Planta Med. 2014;80(13):1113–1117. doi:10.1055/s-0034-138295625137574
  • AliA, IsmailN, MackeenM, et al. Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharm Biol. 2000;38(4):298–301. doi:10.1076/1388-0209(200009)38:4;1-A;FT29821214480
  • KanokmedhakulK, KanokmedhakulS, PhatchanaR. Biological activity of anthraquinones and triterpenoids from prismatomeris fragrans. J Ethnopharmacol. 2005;100(3):284–288. doi:10.1016/j.jep.2005.03.01815885942
  • InoueK, YoshidaM, TakahashiM, et al. Possible contribution of rubiadin, a metabolite of madder color, to renal carcinogenesis in rats. Food Chem Toxicol. 2009;47(4):752–759. doi:10.1016/j.fct.2009.01.00319167447
  • InoueK, YoshidaM, TakahashiM, et al. Carcinogenic potential of alizarin and rubiadin, components of madder color, in a rat medium‐term multi‐organ bioassay. Cancer Sci. 2009;100(12):2261–2267. doi:10.1111/j.1349-7006.2009.01342.x19793347
  • BlömekeB, PoginskyB, SchmutteC, MarquardtH, WestendorfJ. Formation of genotoxic metabolites from anthraquinone glycosides, present in Rubia tinctorum L. Mutat Res/Fundament Mol Mechan Mutagen. 1992;265(2):263–272. doi:10.1016/0027-5107(92)90055-7
  • SiewertB, StuppnerH. The photoactivity of natural products–an overlooked potential of phytomedicines? Phytomedicine. 2019;60:152985. doi:10.1016/j.phymed.2019.15298531257117
  • MontoyaSCN, CominiLR, VittarBR, FernándezIM, RivarolaVA, CabreraJL. Phototoxic effects of Heterophyllaea pustulata (Rubiaceae). Toxicon. 2008;51(8):1409–1415. doi:10.1016/j.toxicon.2008.03.01118513778
  • MicheloudJF, Colque-CaroLA, CominiLR, et al. Spontaneous photosensitization by Heterophyllaea pustulata Hook. f. (Rubiaceae), in sheep from Northwestern Argentina. Trop Anim Health Prod. 2017;49(7):1553–1556. doi:10.1007/s11250-017-1354-028733761
  • MicheloudJF, AguirreLS, MarioniJ, et al. Experimental poisoning by Heterophyllaea pustulata Hook. f. (Rubiaceae) in goats. Clinical, biochemical and toxicological aspects. Toxicon. 2019;165:56–61. doi:10.1016/j.toxicon.2019.04.01531029636
  • SambrookP, CooperC. Osteoporosis. Lancet. 2006;367(9527):2010–2018. doi:10.1016/S0140-6736(06)68891-016782492
  • HeY-Q, ZhangQ, ShenY, et al. Rubiadin-1-methyl ether from Morinda officinalis How. Inhibits osteoclastogenesis through blocking RANKL-induced NF-κB pathway. Biochem Biophys Res Commun. 2018;506(4):927–931. doi:10.1016/j.bbrc.2018.10.10030392907
  • BaoL, QinL, LiuL, et al. Anthraquinone compounds from Morinda officinalis inhibit osteoclastic bone resorption in vitro. Chem Biol Interact. 2011;194(2–3):97–105. doi:10.1016/j.cbi.2011.08.01321945525
  • WuY-B, ZhengC-J, QinL-P, et al. Antiosteoporotic activity of anthraquinones from Morinda officinalis on osteoblasts and osteoclasts. Molecules. 2009;14(1):573–583. doi:10.3390/molecules1401057319169204
  • XiaT, DongX, LinL, et al. Metabolomics profiling provides valuable insights into the underlying mechanisms of Morinda officinalis on protecting glucocorticoid-induced osteoporosis. J Pharm Biomed Anal. 2019;166:336–346. doi:10.1016/j.jpba.2019.01.01930690247
  • LibbyP. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(suppl_3):S140–S146. doi:10.1301/nr.2007.dec.S140-S14618240538
  • MohrETB, Dos Santos NascimentoMVP, da RosaJS, et al. Evidence that the anti-inflammatory effect of Rubiadin-1-methyl ether has an immunomodulatory context. Mediators Inflamm. 2019;2019:1–12. doi:10.1155/2019/6474168
  • MujeebM, AhadA, AqilM, et al. Ameliorative effect of rubiadin-loaded nanocarriers in STZ-NA-induced diabetic nephropathy in rats: formulation optimization, molecular docking, and in vivo biological evaluation. Drug Deliv Transl Res. 2021;1–14. doi:10.1007/s13346-021-00971-032337668
  • YenG-C, DuhP-D, ChuangD-Y. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000;70(4):437–441. doi:10.1016/S0308-8146(00)00108-4
  • MalterudKE, FarbrotTL, HuseAE, SundRB. Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacology. 1993;47(Suppl. 1):77–85. doi:10.1159/0001398468234446
  • BaghianiA, CharefN, DjarmouniM, SaadehA, ArrarL, MubarakS. Free radical scanvenging and antioxidant effects of some anthraquinone derivatives. Med Chem (Los Angeles). 2011;7(6):639–644. doi:10.2174/157340611797928424
  • TripathiY, SharmaM. Comparison of the antioxidant action of the alcoholic extract of Rubia cordifolia with rubiadin. Indian J Biochem Biophys. 1998;35(5):313–316.10410466
  • MishraBB, KishoreN, TiwariVK, SinghDD, TripathiV. A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae). Fitoterapia. 2010;81(2):104–107. doi:10.1016/j.fitote.2009.08.00919686813
  • MohamadzadehM, ZareiM, VessalM. Synthesis, in vitro biological evaluation and in silico molecular docking studies of novel β-lactam-anthraquinone hybrids. Bioorg Chem. 2020;95:103515. doi:10.1016/j.bioorg.2019.10351531884134
  • KhanMS, GaoJ, ChenX, et al. The endophytic bacteria Bacillus velezensis Lle-9, isolated from Lilium leucanthum, harbors antifungal activity and plant growth-promoting effects. J Microbiol Biotechnol. 2020;30(5):668–680. doi:10.4014/jmb.1910.1002132482932
  • MarioniJ, Da SilvaMA, CabreraJL, MontoyaSCN, ParajeMG. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation. Phytomedicine. 2016;23(12):1321–1328. doi:10.1016/j.phymed.2016.07.00827765351
  • MarioniJ, Bresolí-ObachR, AgutM, et al. On the mechanism of Candida tropicalis biofilm reduction by the combined action of naturally-occurring anthraquinones and blue light. PLoS One. 2017;12(7):e0181517. doi:10.1371/journal.pone.018151728723923
  • MontoyaSCN, CominiLR, SarmientoM, et al. Natural anthraquinones probed as type I and type II photosensitizers: singlet oxygen and superoxide anion production. J Photochem Photobiol B. 2005;78(1):77–83. doi:10.1016/j.jphotobiol.2004.09.00915629252
  • LikhitwitayawuidK, Dej-adisaiS, JongbunprasertV, KrungkraiJ. Antimalarials from Stephania venosa, Prismatomeris sessiliflora, Diospyros Montana and Murraya siamensis1. Planta Med. 1999;65(08):754–756. doi:10.1055/s-2006-96085810630122
  • KoumagloK, GbeassorM, NikabuO, De SouzaC, WernerW. Effects of three compounds extracted from Morinda lucida on Plasmodium falciparum. Planta Med. 1992;58(06):533–534. doi:10.1055/s-2006-9615431484892
  • CominiL, MontoyaSN, PáezP, ArgüelloGA, AlbesaI, CabreraJ. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae). J Photochem Photobiol B. 2011;102(2):108–114. doi:10.1016/j.jphotobiol.2010.09.00920965744
  • WangD, WangX-H, YuX, et al. Pharmacokinetics of anthraquinones from medicinal plants. Front Pharmacol. 2021;12:306.
  • SchymanP, LiuR, DesaiV, WallqvistA. vNN web server for ADMET predictions. Front Pharmacol. 2017;8:889. doi:10.3389/fphar.2017.0088929255418
  • EPA. User’s guide for T.E.S.T. (version 5.1) (toxicity estimation software tool): a program to estimate toxicity from molecular structure. Avaiable from: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test. Accessed October 20, 2021.
  • CollieGW, KohCM, O’NeillDJ, et al. Structural and molecular insight into resistance mechanisms of first generation cMET inhibitors. ACS Med Chem Lett. 2019;10(9):1322–1327. doi:10.1021/acsmedchemlett.9b0027631531204
  • SakamotoH, TsukaguchiT, HiroshimaS, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679–690. doi:10.1016/j.ccr.2011.04.00421575866
  • SivakumarenSC, ShimH, ZhangT, et al. Targeting the PI5P4K lipid kinase family in cancer using covalent inhibitors. Cell Chem Biol. 2020;27(5):525–537. doi:10.1016/j.chembiol.2020.02.00332130941
  • HuckJD, QueNL, SharmaS, TaldoneT, ChiosisG, GewirthDT. Structures of Hsp90α and Hsp90β bound to a purine‐scaffold inhibitor reveal an exploitable residue for drug selectivity. Proteins Struct Func Bioinform. 2019;87(10):869–877. doi:10.1002/prot.25750
  • ThomsenR, ChristensenMH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315–3321. doi:10.1021/jm051197e16722650
  • Cosmetic components comprised of the rubiadin having anti-allergy activity. Patent number KR101337564B1. Korea Kolmar Co., Ltd.; 2010. Available from: https://patents.google.com/patent/KR101337564B1/en. Accessed October 28, 2021.
  • AkhtarMN, ZareenS, YeapSK, et al. Total synthesis, cytotoxic effects of damnacanthal, nordamnacanthal and related anthraquinone analogues. Molecules. 2013;18(8):10042–10055. doi:10.3390/molecules18081004223966087
  • KumarP, SharmaAK, ShuklaP. Physiochemical screening of marker anthraquinones and derivatives from the Pentas lanceolata (Forss. k.) deflers leaves. Eur J Pharm Med Res. 2017;4(5):439–446.
  • DossehC, TessierA, DelaveauP. Nouvelles Quinones des Racines de Rubia cordifolia L., III. Planta Med. 1981;43(12):360–366. doi:10.1055/s-2007-97152417402060
  • ShenC-H, LiuC-T, SongX-J, et al. Evaluation of analgesic and anti-inflammatory activities of Rubia cordifolia L. by spectrum-effect relationships. J Chromatogr B. 2018;1090:73–80. doi:10.1016/j.jchromb.2018.05.021
  • LiuQ, KimSB, AhnJH, HwangBY, KimSY, LeeMK. Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells. Nat Prod Res. 2012;26(18):1750–1754. doi:10.1080/14786419.2011.60867622008000
  • ZhangJ-H, XinH-L, XuY-M, et al. Morinda officinalis How.–a comprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2018;213:230–255. doi:10.1016/j.jep.2017.10.02829126988
  • ZhaoX, WeiJ, YangM. Simultaneous analysis of iridoid glycosides and anthraquinones in Morinda officinalis using UPLC-QqQ-MS/MS and UPLC-Q/TOF-MSE. Molecules. 2018;23(5):1070. doi:10.3390/molecules23051070
  • MugasML, MarioniJ, MartinezF, et al. Inactivation of herpes simplex virus by photosensitizing anthraquinones isolated from heterophyllaea pustulata. Planta Med. 2021;80:716–723.
  • SchunckHE. III. On rubian and its products of decomposition. Philos Transact Royal Soc London. 1853;(143):67–107. doi:10.1098/rstl.1853.0003
  • KawasakiY, GodaY, YoshihiraK. The mutagenic constituents of Rubia tinctorum. Chem Pharm Bull (Tokyo). 1992;40(6):1504–1509. doi:10.1248/cpb.40.15041394669
  • CuocoG, MatheC, ArchierP, ChematF, VieillescazesC. A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection. Ultrason Sonochem. 2009;16(1):75–82. doi:10.1016/j.ultsonch.2008.05.01418617432
  • CookseyC. Quirks of dye nomenclature. 14. Madder: queen of red dyes. Biotech Histochem. 2020;95(6):474–482. doi:10.1080/10520295.2020.171407932022588
  • TuntiwachwuttikulP, ButsuriY, SukkoetP, PrawatU, TaylorWC. Anthraquinones from the roots of Prismatomeris malayana. Nat Prod Res. 2008;22(11):962–968. doi:10.1080/1478641070165026118629711
  • RahmanMM. Evaluation of Hymenodictyon excelsum phytochemical’s therapeutic value against prostate cancer by molecular Docking study. Jundishapur j Nat Pharma Prod. 2015;10(1). doi:10.17795/jjnpp-18216
  • AhmadR, ShaariK, LajisNH, HamzahAS, IsmailNH, KitajimaM. Anthraquinones from Hedyotis capitellata. Phytochemistry. 2005;66(10):1141–1147. doi:10.1016/j.phytochem.2005.02.02315924918
  • UsaiM, MarchettiM. Anthraquinone distribution in the hypogeal apparatus of Rubia peregrina L. growing wild in Sardinia. Nat Prod Res. 2010;24(7):626–632. doi:10.1080/1478641090288484220401794
  • BussmannRW, HennigL, GiannisA, OrtweinJ, KutchanTM, FengX. Anthraquinone content in Noni (Morinda citrifolia L.). Evid Based Complement Altern Med. 2013;2013:1–5. doi:10.1155/2013/208378
  • RajanR, VenkataramanR, BabyS. A new lupane-type triterpenoid fatty acid ester and other isolates from Ophiorrhiza shendurunii. Nat Prod Res. 2016;30(19):2197–2203. doi:10.1080/14786419.2016.116023226979490
  • OsmanCP, IsmailNH, AhmadR, AhmatN, AwangK, JaafarFM. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae). Molecules. 2010;15(10):7218–7226. doi:10.3390/molecules1510721820966871
  • YuanS, ZhaoY. Chemical constituents of Knoxia valerianoides. Acta Pharmaceutica Sinica. 2006;41(8):735–737.17039778
  • YooNH, JangDS, LeeYM, et al. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Arch Pharm Res. 2010;33(2):209–214. doi:10.1007/s12272-010-0204-720195820
  • ZhaoF, WangS-J, LinS, et al. Anthraquinones from the roots of Knoxia valerianoides. J Asian Nat Prod Res. 2011;13(11):1023–1029. doi:10.1080/10286020.2011.60681322007602
  • LanM, LuoC, TanC, ChenL, WeiS, ZhuD. Study on chemical constituents of the ethyl acetate extract from Blumea aromatica. J Chin Med Mater. 2012;35(2):229–231.
  • JiangJ-S, FengZ-M, ZhangP-C. Chemical constituents from root of Prismatomeris tetrandra. China J Chin Materia Medica. 2005;30(22):1751–1753.
  • HuangW, LiY, JiangJ. Chemical constituents from Hedyotis diffusa. China J Chin Materia Medica. 2009;34(6):712–714.
  • LiuG, ChenZ, YaoT, DingW. Studies on the chemical constituents of Rhynchotechum vestitum Hook. F. et Thoms. Acta Pharmaceutica Sinica. 1990;25(9):699–704.2092579
  • HaqueMA, KhanG, RazzaqueS, KhatunK, ChakrabortyAK, AlamMS. Extraction of rubiadin dye from Swietenia mahagoni and its dyeing characteristics onto silk fabric using metallic mordants. Indian J Fibre Text Res. 2013;38:280–284.
  • LiS, OuyangQ, TanX, ShiS, YaoZ. Chemical constituents of Morinda officinalis how. China J Chin Materia Medica. 1991;16(11):675–676, 703.
  • ChokchaisiriS, SiriwattanasathienY, ThongbamrerC, SuksamrarnA, RukachaisirikulT. Morindaquinone, a new bianthraquinone from Morinda coreia roots. Nat Prod Res. 2019;1–7. doi:10.1080/14786419.2019.1705820
  • ZouX, LiangJ, DingL-S, PengS-L. Studies on chemical constituents of Paederia scandense. China J Chin Materia Medica. 2006;31(17):1436–1441.
  • LiY, QiS, ChenX, HuZ. Separation and determination of the anthraquinones in Xanthophytum attopvensis pierre by nonaqueous capillary electrophoresis. Talanta. 2005;65(1):15–20.18969758
  • TosaH, IinumaM, AsaiF, et al. Anthraquinones from Neonauclea calycina and their inhibitory activity against DNA topoisomerase II. Biol Pharm Bull. 1998;21(6):641–642. doi:10.1248/bpb.21.6419657055
  • KhanhPN, HuongTT, SpigaO, et al. In silico screening of anthraquinones from Prismatomeris memecyloides as novel phosphodiesterase type-5 inhibitors (PDE-5Is). Revista Internacional De Andrologia. 2018;16(4):147–158. doi:10.1016/j.androl.2017.07.00130286869
  • Chen-R-R, LiuJ, ChenZ, CaiW-J, LiX-F, LuC-L. Anthraquinones extract from morinda angustifolia roxb. Root alleviates hepatic injury induced by carbon tetrachloride through inhibition of hepatic oxidative stress. Evid Based Complement Altern Med. 2020;2020. doi:10.1155/2020/9861571
  • LvZ, ZhangQ, ChenR, YuD. Alkaloids and anthraquinones from branches and leaves of Uvaria kurzii. China J Chin Materia Medica. 2011;36(9):1190–1192.