492
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Chemistry, Biosynthesis and Pharmacology of Streptonigrin: An Old Molecule with Future Prospects for New Drug Design, Development and Therapy

, ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , & show all
Pages 1065-1078 | Received 07 Sep 2022, Accepted 20 Jan 2023, Published online: 08 Apr 2023

References

  • Donohoe TJ, Jones CR, Kornahrens AF, et al. Total synthesis of the antitumor antibiotic (±)-streptonigrin: first-and second-generation routes for de novo pyridine formation using ring-closing metathesis. J Org Chem. 2013;78(24):12338–12350. doi:10.1021/jo402388f
  • Chiu -Y-YH, Lipscomb WN. Molecular and crystal structure of streptonigrin. J Am Chem Soc. 1975;97(9):2525–2530. doi:10.1021/ja00842a033
  • Boger DL. Diels–alder reactions of heterocyclic azadienes: development of a strategy for the total synthesis of streptonigrin, lavendamycin, and synthetic quinoline-5, 8-quinones. In: Strategies and Tactics in Organic Synthesis. Vol. 2. Elsevier; 1989.
  • Dreyton CJ, Anderson ED, Subramanian V, Boger DL, Thompson PR. Insights into the mechanism of streptonigrin-induced protein arginine deiminase inactivation. Bioorg Med Chem. 2014;22(4):1362–1369. doi:10.1016/j.bmc.2013.12.064
  • Wizeman JW, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun. 2017;487(1):134–139. doi:10.1016/j.bbrc.2017.04.031
  • Ham A, Rabadi M, Kim M, et al. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;307(9):F1052–F1062. doi:10.1152/ajprenal.00243.2014
  • Rabadi M, Kim M, D’Agati V, Lee HT. Peptidyl arginine deiminase-4-deficient mice are protected against kidney and liver injury after renal ischemia and reperfusion. Am J Physiol Renal Physiol. 2016;311(2):F437–F449. doi:10.1152/ajprenal.00254.2016
  • Chen DB, Gao HW, Peng C, et al. Quinones as preventive agents in Alzheimer’s diseases: focus on NLRP3 inflammasomes. J Pharm Pharmacol. 2020;72(11):1481–1490. doi:10.1111/jphp.13332
  • Dahlem Junior MA, Nguema Edzang RW, Catto AL, Raimundo J-M. Quinones as an efficient molecular scaffold in the antibacterial/antifungal or antitumoral arsenal. Int J Mol Sci. 2022;23(22):14108. doi:10.3390/ijms232214108
  • Nilufer B, Hatice Y, Amac TF, et al. Synthesis, computational study, and evaluation of in vitro antimicrobial, antibiofilm, and anticancer activities of new sulfanyl aminonaphthoquinone derivatives. Lett Drug Des Discov. 2017;14(6). doi:10.2174/157018081406170606155530
  • Lee HW, Choi H, Nam SJ, Fenical W, Kim H. Potent inhibition of monoamine oxidase B by a piloquinone from marine-derived streptomyces sp. CNQ-027. J Microbiol Biotechnol. 2017;27:785–790. doi:10.4014/jmb.1612.12025
  • Alfadhli A, Mack A, Harper L, Berk S, Ritchie C, Barklis E. Analysis of quinolinequinone reactivity, cytotoxicity, and anti-HIV-1 properties. Bioorg Med Chem. 2016;24(21):5618–5625. doi:10.1016/j.bmc.2016.09.028
  • Patel OPS, Beteck RM, Legoabe LJ. Antimalarial application of quinones: a recent update. Eur J Med Chem. 2021;210:113084. doi:10.1016/j.ejmech.2020.113084
  • Benites J, Valderrama JA, Ramos M, Muccioli GG, Buc Calderon P. Targeting Akt as strategy to kill cancer cells using 3-substituted 5-anilinobenzo[c]isoxazolequinones: a preliminary study. Biomed Pharmacother. 2018;97:778–783. doi:10.1016/j.biopha.2017.10.108
  • Lee HW, Ryu HW, Kang MG, Park D, Oh SR, Kim H. Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone. Bioorg Med Chem Lett. 2017;27(5):1136–1140. doi:10.1016/j.bmcl.2017.01.085
  • Pingaew R, Prachayasittikul V, Worachartcheewan A, et al. Novel 1,4-naphthoquinone-based sulfonamides: synthesis, QSAR, anticancer and antimalarial studies. Eur J Med Chem. 2015;103:446–459. doi:10.1016/j.ejmech.2015.09.001
  • Yildirim H, Bayrak N, Tuyun AF, Kara EM, Celik BO, Gupta GK. 2,3-disubstituted-1,4-naphthoquinones containing an arylamine with trifluoromethyl group: synthesis, biological evaluation, and computational study. RSC Adv. 2017;7:25753–25764. doi:10.1039/C7RA00868F
  • Xu F, Kong D, He X, et al. Characterization of streptonigrin biosynthesis reveals a cryptic carboxyl methylation and an unusual oxidative cleavage of a N–C bond. J Am Chem Soc. 2013;135(5):1739–1748. doi:10.1021/ja3069243
  • Lee S-H, Lee W-K, Kim N, et al. Renal cell carcinoma is abrogated by p53 stabilization through transglutaminase 2 inhibition. Cancers. 2018;10(11):455. doi:10.3390/cancers10110455
  • Sztiller-Sikorska M, Koprowska K, Majchrzak K, Hartman M, Czyz M. Natural compounds’ activity against cancer stem-like or fast-cycling melanoma cells. PLoS One. 2014;9(3):e90783. doi:10.1371/journal.pone.0090783
  • Ambaye N, Chen C-H, Khanna S, Li Y-J, Chen Y. Streptonigrin inhibits SENP1 and reduces the protein level of hypoxia-inducible factor 1α (HIF1α) in cells. Biochemistry. 2018;57(11):1807–1813. doi:10.1021/acs.biochem.7b00947
  • Nayak A, Müller S. SUMO-specific proteases/isopeptidases: sENPs and beyond. Genome Biol. 2014;15(7):1–7. doi:10.1186/s13059-014-0422-2
  • Wang Q, Xia N, Li T, et al. SUMO-specific protease 1 promotes prostate cancer progression and metastasis. Oncogene. 2013;32(19):2493–2498. doi:10.1038/onc.2012.250
  • Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell. 2007;131(3):584–595. doi:10.1016/j.cell.2007.08.045
  • Park S, Chun S. Streptonigrin inhibits β-Catenin/Tcf signaling and shows cytotoxicity in β-catenin-activated cells. Biochimica et Biophysica Acta. 2011;1810(12):1340–1345. doi:10.1016/j.bbagen.2011.06.023
  • Loyola AC, Dao K, Shang R, et al. Streptonigrin at low concentration promotes heterochromatin formation. Sci Rep. 2020;10(1):1–11. doi:10.1038/s41598-020-60469-6
  • Mahfuz AB, Iqbal MN, Opazo FS, Zubair-Bin-Mahfuj A. Characterization of ribonucleotide reductases of emerging pathogens Elizabethkingia anophelis and Elizabethkingia meningoseptica and streptonigrin as their inhibitor: a computational study. J Biomol Struct Dyn. 2021;40:1–13.
  • Sankari S, O’Brian MR. Synthetic lethality of the bfr and mbfA genes reveals a functional relationship between iron storage and iron export in managing stress responses in Bradyrhizobium japonicum. PLoS One. 2016;11(6):e0157250. doi:10.1371/journal.pone.0157250
  • Bhubhanil S, Chamsing J, Sittipo P, Chaoprasid P, Sukchawalit R, Mongkolsuk S. Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. Microbiology. 2014;160(5):863–871. doi:10.1099/mic.0.076802-0
  • Herlt A, Rickards R, Wu J-P. The structure of streptonigrone, and a comment on the biosynthesis of the streptonigrin antibiotics. J Antibiot. 1985;38(4):516–518. doi:10.7164/antibiotics.38.516
  • Crepps SC, Fields EE, Galan D, Corbett JP, Von Hasseln ER, Spatafora GA. The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response. Mol Oral Microbiol. 2016;31(6):526–539. doi:10.1111/omi.12147
  • Knuckley B, Jones JE, Bachovchin DA, et al. A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem Commun. 2010;46(38):7175–7177. doi:10.1039/c0cc02634d
  • Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93(2):365–374. doi:10.1016/j.kint.2017.08.014
  • Luo Y, Arita K, Bhatia M, et al. Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry. 2006;45(39):11727–11736. doi:10.1021/bi061180d
  • Anderberg PI, Luck IJ, Harding MM. Assignment of the 13C and 15N NMR spectra of the antitumour antibiotic streptonigrin. Magn Reson Chem. 2002;40(4):313–315. doi:10.1002/mrc.997
  • Kametani T, Ogasawara K, Shio M, Kozuka A. Streptonigrin and related compounds. VI. The NMR spectra of 4-(2, 3, 4-trimethoxyphenyl)-2, 3-dimethylpyridine derivatives. (Studies on the syntheses of heterocyclic compounds. CLXX). Yakugaku zassh. 1967;87(3):260–265. doi:10.1248/yakushi1947.87.3_260
  • Rao KV, Rock CP. Streptonigrin and related compounds. 6. Synthesis and activity of some quinoxaline analogues. J Heterocycl Chem. 1996;33(2):447–458. doi:10.1002/jhet.5570330238
  • Auger I, Charpin C, Balandraud N, Martin M, Roudier J. Autoantibodies to PAD4 and BRAF in rheumatoid arthritis. Autoimmun Rev. 2012;11(11):801–803. doi:10.1016/j.autrev.2012.02.009
  • Wang X, Xu F, Huang T, Deng Z, Lin S. A novel streptonigrin type alkaloid from the Streptomyces flocculus CGMCC 4.1223 mutant Δ stnA/Q2. Nat Prod Res. 2022;36(13):3337–3345. doi:10.1080/14786419.2020.1856840
  • Bayrak N, Ciftci HI, Yildiz M, et al. ‘Structure based design, synthesis, and evaluation of anti-CML activity of the quinolinequinones as LY83583 analogs’. Chem Biol Interact. 2021;345:109555. doi:10.1016/j.cbi.2021.109555
  • Ciftci HI, Bayrak N, Mahmut Y, et al. Design, synthesis and investigation of the mechanism of action underlying anti-leukemic effects of the quinolinequinones as LY83583 analogs. Bioorg Chem. 2021;114:105160. doi:10.1016/j.bioorg.2021.105160
  • Mataraci-Kara E, Bayrak N, Yildiz M, Yildirim H, Ozbek-Celik B, Tuyun AF. Discovery and structure-activity relationships of the quinolinequinones: promising antimicrobial agents and mode of action evaluation. Drug Dev Res. 2022;83:628–636. doi:10.1002/ddr.21893
  • Mataraci-Kara E, Bayrak N, Yildiz M, Yildirim H, TuYuN AF. Active quinolinequinones against methicillin-resistant staphylococcus spp. Chem Biodivers. 2022;19:e202100616. doi:10.1002/cbdv.202100616
  • Yildirim H, Bayrak N, Yildiz M, et al. Highly active small aminated quinolinequinones against drug-resistant Staphylococcus aureus and Candida albicans. Molecules. 2022;27(9):2923. doi:10.3390/molecules27092923
  • Yildiz M, Bayrak N, Yildirim H, et al. Discovery of quinolinequinones with N-phenylpiperazine by conversion of hydroxyquinoline as a new class of antimicrobial agents targeting resistant pathogenic microorganisms. Bioorg Chem. 2022;128:106045. doi:10.1016/j.bioorg.2022.106045
  • Yildirim H, Bayrak N, Yildiz M, et al. Aminated quinolinequinones as privileged scaffolds for antibacterial agents: synthesis, in vitro evaluation, and putative mode of action. ACS Omega. 2022;7(46):41915–41928. doi:10.1021/acsomega.2c03193
  • Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198. doi:10.1111/jphp.13098
  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–135. doi:10.1016/j.addr.2010.03.011
  • Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc. 2004;126(21):6520–6521. doi:10.1021/ja048792a
  • Rowinsky EK, Rizzo J, Ochoa L, et al. A Phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol. 2003;21(1):148–157. doi:10.1200/JCO.2003.03.143
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96(2):273–283. doi:10.1016/j.jconrel.2004.02.003
  • Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4(1):81. doi:10.7150/thno.7193
  • Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45. doi:10.1016/j.tibtech.2013.09.007
  • Liu Y, Ran R, Chen J, et al. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials. 2014;35(17):4835–4847. doi:10.1016/j.biomaterials.2014.02.031
  • Choudhury H, Sisinthy SP, Gorain B, Kesharwani P. History and introduction of dendrimers. In: Dendrimer-Based Nanotherapeutics. Elsevier; 2021.
  • Graf N, Bielenberg DR, Kolishetti N, et al. αVβ3 integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt (IV) prodrug. ACS Nano. 2012;6(5):4530–4539. doi:10.1021/nn301148e
  • Lasa-Saracibar B, Estella-Hermoso de Mendoza A, Guada M, Dios-Vieitez C, Blanco-Prieto MJ. Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin Drug Deliv. 2012;9(10):1245–1261. doi:10.1517/17425247.2012.717928
  • Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials. 2017;7(7):189. doi:10.3390/nano7070189
  • Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Carbon nanoparticles and their biomedical applications. Appl Sci. 2022;12(15):7865. doi:10.3390/app12157865
  • Humphrey E, Dietrich F. Clinical experience with the methyl ester of streptonigrin (Ncs-45384). Cancer Chemother Rep. 1963;33:21–26.
  • Isshiki K, Sawa T, Miura K, et al. A new antitumor antibiotic: demethylstreptonigrin. J Antibiot. 1986;39(7):1013–1015. doi:10.7164/antibiotics.39.1013
  • Inouye Y, Okada H, Roy SK, et al. Biological properties of streptonigrin derivatives I. antimicrobial and cytocidal activities. J Antibiot. 1985;38(10):1429–1432. doi:10.7164/antibiotics.38.1429