352
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Tracking Research on Hemoglobin-Based Oxygen Carriers: A Scientometric Analysis and In-Depth Review

, , , , , , , & show all
Pages 2549-2571 | Received 13 Jun 2023, Accepted 04 Aug 2023, Published online: 24 Aug 2023

References

  • Liu WL, Liu T, Zou MZ, et al. Aggressive man‐made red blood cells for hypoxia‐resistant photodynamic therapy. Adv Mater. 2018;30(35):1802006. doi:10.1002/adma.201802006
  • Sen Gupta A, Doctor A. Oxygen carriers. Damage Control Resuscit. 2020;2020:197–222.
  • Bialas C, Moser C, Sims CA. Artificial oxygen carriers and red blood cell substitutes: a historic overview and recent developments toward military and clinical relevance. J Trauma Acute Care Surg. 2019;87(1S):S48–S58. doi:10.1097/TA.0000000000002250
  • Coll-Satue C, Bishnoi S, Chen J, Hosta-Rigau L. Stepping stones to the future of haemoglobin-based blood products: clinical, preclinical and innovative examples. Biomater Sci. 2021;9(4):1135–1152. doi:10.1039/D0BM01767A
  • D’Alessandro A, Kriebardis AG, Rinalducci S, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205–219. doi:10.1111/trf.12804
  • Devine DV, Serrano K. The platelet storage lesion. Clin Lab Med. 2010;30(2):475–487. doi:10.1016/j.cll.2010.02.002
  • Okamoto W, Hasegawa M, Usui T, et al. Hemoglobin-albumin clusters as an artificial O2 carrier: physicochemical properties and resuscitation from hemorrhagic shock in rats. J Biomed Mater Res. 2022;110(8):1827–1838. doi:10.1002/jbm.b.35040
  • Prokopchuk‐Gauk O, Petraszko T, Nahirniak S, Doncaster C, Levy I. Blood shortages planning in Canada: the national emergency blood management committee experience during the first 6 months of the COVID −19 pandemic. Transfusion. 2021;61(11):3258. doi:10.1111/trf.16661
  • Bian Y, Chang TMS. A novel nanobiotherapeutic poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a rat model with 90 minutes of sustained severe hemorrhagic shock with loss of 2/3 blood volume. Artif Cells Nanomed Biotechnol. 2015;43(1):1–9. doi:10.3109/21691401.2014.964554
  • Guo C, Chang TMS. Long term safety and immunological effects of a nanobiotherapeutic, bovine poly-[hemoglobin-catalase-superoxide dismutase-carbonic anhydrase], after four weekly 5% blood volume top-loading followed by a challenge of 30% exchange transfusion. Artif Cells, Nanomed Biotechnol. 2018;46(7):1349–1363. doi:10.1080/21691401.2018.1476375
  • Bian Y, Guo C, Chang TM. Temperature stability of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at− 80° C, 4° C, 25° C and 37° C or pasteurization at 70° C. Artif Cells, Nanomed Biotechnol. 2016;44(1):41–47. doi:10.3109/21691401.2015.1110871
  • Guo C, Gynn M, Chang T. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin–superoxide dismutase–catalase–carbonic anhydrase. Artif Cells, Nanomed Biotechnol. 2015;43(3):157–162. doi:10.3109/21691401.2015.1035479
  • Chang TMS. Translational feasibility of soluble nanobiotherapeutics with enhanced red blood cell functions. Artif Cells, Nanomed Biotechnol. 2017;45(4):671–676. doi:10.1080/21691401.2017.1293676
  • Cebrino J, Portero de la Cruz S. A worldwide bibliometric analysis of published literature on workplace violence in healthcare personnel. PLoS One. 2020;15(11):e0242781. doi:10.1371/journal.pone.0242781
  • Gall M, Nguyen KH, Cutter SL. Integrated research on disaster risk: is it really integrated? Int J Disaster Risk Reduct. 2015;12:255–267. doi:10.1016/j.ijdrr.2015.01.010
  • Chen X, Yang K, Xu Y, Li K. Top-100 highest-cited original articles in inflammatory bowel disease: a bibliometric analysis. Medicine. 2019;98(20):1.
  • Perazzo MF, Otoni ALC, Costa MS, Granville‐Granville AF, Paiva SM, Martins‐Júnior PA. The top 100 most‐cited papers in Paediatric Dentistry journals: a bibliometric analysis. Int J Paediatr Dent. 2019;29(6):692–711. doi:10.1111/ipd.12563
  • Xu D, Wang Y-L, Wang K-T, et al. A scientometrics analysis and visualization of depressive disorder. Curr Neuropharmacol. 2021;19(6):766–786. doi:10.2174/1570159X18666200905151333
  • Wu H, Tong L, Wang Y, Yan H, Sun Z. Bibliometric analysis of global research trends on ultrasound microbubble: a quickly developing field. Front Pharmacol. 2021;12:646626. doi:10.3389/fphar.2021.646626
  • Van Eck N, Waltman L. Software survey: vOSviewer, a computer program for bibliometric mapping. scientometrics. 2010;84(2):523–538. doi:10.1007/s11192-009-0146-3
  • Chen C. Science mapping: a systematic review of the literature. J Data Inf Sci. 2017;2(2):1–40. doi:10.1515/jdis-2017-0006
  • Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opin Biol Ther. 2014;14(9):1295–1317. doi:10.1517/14712598.2014.920813
  • Synnestvedt MB, Chen C, Holmes JH. CiteSpace II: visualization and knowledge discovery in bibliographic databases. Am Med Inform Assoc. 2005;2005:724.
  • Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci USA. 2004;101(suppl_1):5303–5310. doi:10.1073/pnas.0307513100
  • Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 2017;11(4):959–975. doi:10.1016/j.joi.2017.08.007
  • Shen Z, Wu H, Chen Z, et al. The global research of artificial intelligence on prostate cancer: a 22-year bibliometric analysis. Front Oncol. 2022;12:843735. doi:10.3389/fonc.2022.843735
  • Bornmann L, Daniel HD. What do we know about the h index? J Am Soc Inf Sci. 2007;58(9):1381–1385. doi:10.1002/asi.20609
  • The Ohio State University. Andre Palmer Biography. Available from: https://cbe.osu.edu/people/palmer.351. Accessed August 12, 2023.
  • US Food & Drug Administration. Evaluating the Safety and Efficacy of Hemoglobin-based Blood Substitutes. Available from: https://www.fda.gov/vaccines-blood-biologics/biologics-research-projects/evaluating-safety-and-efficacy-hemoglobin-based-blood-substitutes. Accessed August 12, 2023.
  • Liu H, Chen H, Hong R, Liu H, You W. Mapping knowledge structure and research trends of emergency evacuation studies. Saf Sci. 2020;121:348–361. doi:10.1016/j.ssci.2019.09.020
  • Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304–2312. doi:10.1001/jama.299.19.jrv80007
  • Levy JH, Goodnough LT, Greilich PE, et al. Polymerized bovine hemoglobin solution as a replacement for allogeneic red blood cell transfusion after cardiac surgery: results of a randomized, double-blind trial. J Thorac Cardiovasc Surg. 2002;124(1):35–42. doi:10.1067/mtc.2002.121505
  • Sprung J, Kindscher JD, Wahr JA, et al. The use of bovine hemoglobin glutamer-250 (Hemopure®) in surgical patients: results of a multicenter, randomized, single-blinded trial. Anesth Analg. 2002;94(4):799–808. doi:10.1097/00000539-200204000-00006
  • Chen J-Y, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics. 2009;64(8):803–813. doi:10.1590/S1807-59322009000800016
  • Alayash AI. Blood substitutes: why haven’t we been more successful? Trends Biotechnol. 2014;32(4):177–185. doi:10.1016/j.tibtech.2014.02.006
  • Levien LJ, Hodgson RE, James MF. Hemoglobin-based blood substitutes and risk of myocardial infarction and death. JAMA. 2008;300(11):1295. doi:10.1001/jama.300.11.1295-A
  • Mackenzie CF, Pitman AN, Hodgson RE, et al. Are hemoglobin-based oxygen carriers being withheld because of regulatory requirement for equivalence to packed red blood cells? Am J Ther. 2015;22(4):e115–21. doi:10.1097/MJT.0000000000000009
  • Mer M, Hodgson E, Wallis L, et al. Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients. Transfusion. 2016;56(10):2631–2636. doi:10.1111/trf.13726
  • Shander A, Javidroozi M, Thompson G. Letter to the editor (2008): hemoglobin-based blood substitutes and risk of myocardial infarction and death. JAMA. 2008;300(11):1296–1297. doi:10.1001/jama.300.11.1296-b
  • Li H, An H, Wang Y, Huang J, Gao X. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: based on two-mode affiliation network. Phys a Stat Mech Appl. 2016;450:657–669. doi:10.1016/j.physa.2016.01.017
  • Liu X, Zhan FB, Hong S, Niu B, Liu Y. A bibliometric study of earthquake research: 1900–2010. Scientometrics. 2012;92(3):747–765. doi:10.1007/s11192-011-0599-z
  • Yan W, Zheng K, Weng L, et al. Bibliometric evaluation of 2000–2019 publications on functional near-infrared spectroscopy. Neuroimage. 2020;220:117121. doi:10.1016/j.neuroimage.2020.117121
  • Bai B, Bai X, Wang C. Mapping research trends of temporomandibular disorders from 2010 to 2019: a bibliometric analysis. J Oral Rehabil. 2021;48(5):517–530. doi:10.1111/joor.13143
  • Muir WW, Wellman ML. Hemoglobin solutions and tissue oxygenation. J Vet Intern Med. 2003;17(2):127–135. doi:10.1111/j.1939-1676.2003.tb02423.x
  • Sakai H, Masada Y, Takeoka S, Tsuchida E. Characteristics of bovine hemoglobin as a potential source of hemoglobin-vesicles for an artificial oxygen carrier. J Biochem. 2002;131(4):611–617. doi:10.1093/oxfordjournals.jbchem.a003141
  • Johnstone JE, MacLaren LA, Doucet J, McAlister VC. In vitro studies regarding the feasibility of bovine erythrocyte xenotransfusion. Xenotransplantation. 2004;11(1):11–17. doi:10.1111/j.1399-3089.2004.00070.x
  • Mallet V, Dutheil D, Polard V, et al. Dose-ranging study of the performance of the natural oxygen transporter HEMO2 Life in organ preservation. Artif Organs. 2014;38(8):691–701. doi:10.1111/aor.12307
  • Cao M, Wang G, He H, et al. Hemoglobin-based oxygen carriers: potential applications in solid organ preservation. Front Pharmacol. 2021;12:760215. doi:10.3389/fphar.2021.760215
  • Lupon E, Lellouch AG, Zal F, Cetrulo CL, Lantieri LA. Combating hypoxemia in COVID-19 patients with a natural oxygen carrier, HEMO(2)Life® (M101). Med Hypotheses. 2021;146:110421. doi:10.1016/j.mehy.2020.110421
  • Rogers DM, Crookston KP. The approach to the patient who refuses blood transfusion. Transfusion. 2006;46(9):1471–1477. doi:10.1111/j.1537-2995.2006.00947.x
  • Bunn HF, Esham WT, Bull RW. The renal handling of hemoglobin. I. Glomerular filtration. J Exp Med. 1969;129(5):909–923. doi:10.1084/jem.129.5.909
  • Buehler PW, D’Agnillo F, Schaer DJ. Hemoglobin-based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol Med. 2010;16(10):447–457. doi:10.1016/j.molmed.2010.07.006
  • Ortiz D, Barros M, Yan S, Cabrales P. Resuscitation from hemorrhagic shock using polymerized hemoglobin compared to blood. Am J Emerg Med. 2014;32(3):248–255. doi:10.1016/j.ajem.2013.11.045
  • Jahr JS, Moallempour M, Lim JC. HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation). Expert Opin Biol Ther. 2008;8(9):1425–1433. doi:10.1517/14712598.8.9.1425
  • Weiskopf RB, Beliaev AM, Shander A, et al. Addressing the unmet need of life-threatening anemia with hemoglobin-based oxygen carriers. Transfusion. 2017;57(1):207–214. doi:10.1111/trf.13923
  • Chang TM. Semipermeable microcapsules. Science. 1964;146(3643):524–525. doi:10.1126/science.146.3643.524
  • Chang TM. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):418–430. doi:10.1002/wnan.95
  • Moritz ED, Winton CS, Tonnetti L, et al. Screening for Babesia microti in the US blood supply. N Engl J Med. 2016;375(23):2236–2245. doi:10.1056/NEJMoa1600897
  • Li S, Nickels J, Palmer AF. Liposome-encapsulated actin–hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials. 2005;26(17):3759–3769. doi:10.1016/j.biomaterials.2004.09.015
  • Kaneda S, Ishizuka T, Sekiguchi A, Morimoto K, Kasukawa H. Efficacy of liposome‐encapsulated hemoglobin in a rat model of cerebral ischemia. Artif Organs. 2014;38(8):650–655. doi:10.1111/aor.12358
  • Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif Organs. 2009;33(2):139–145. doi:10.1111/j.1525-1594.2008.00698.x
  • Qin Y, Cheng C, Geng H, et al. Efficient ambipolar transport properties in alternate stacking donor-acceptor complexes: from experiment to theory. Phys Chem Chem Phys. 2016;18(20):14094–14103. doi:10.1039/C6CP01509C
  • Intaglietta M, Cabrales P, Tsai AG. Microvascular perspective of oxygen-carrying and -noncarrying blood substitutes. Annu Rev Biomed Eng. 2006;8:289–321. doi:10.1146/annurev.bioeng.8.061505.095713
  • McCarthy MR, Vandegriff KD, Winslow RM. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers. Biophys Chem. 2001;92(1–2):103–117. doi:10.1016/S0301-4622(01)00194-6
  • Sakai H, Hara H, Yuasa M, et al. Molecular dimensions of Hb-based O(2) carriers determine constriction of resistance arteries and hypertension. Am J Physiol Heart Circ Physiol. 2000;279(3):H908–15. doi:10.1152/ajpheart.2000.279.3.H908
  • Winslow RM, Gonzales A, Gonzales ML, et al. Vascular resistance and the efficacy of red cell substitutes in a rat hemorrhage model. J Appl Physiol. 1998;85(3):993–1003. doi:10.1152/jappl.1998.85.3.993
  • Karmakar N, Dhar P. Effect of steady shear stress on fluid filtration through the rabbit arterial wall in the presence of macromolecules. Clin Exp Pharmacol Physiol. 1996;23(4):299–304. doi:10.1111/j.1440-1681.1996.tb02827.x
  • de Wit C, Von bismarck P, Bolz -S-S, Pohl U, Scähfer C. Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo. Pflugers Arch. 1997;434(4):354–361. doi:10.1007/s004240050408
  • Intaglietta M, Johnson PC, Winslow RM. Microvascular and tissue oxygen distribution. Cardiovasc Res. 1996;32(4):632–643. doi:10.1016/S0008-6363(96)00110-1
  • Fischer SR, Burnet M, Traber DL, Prough DS, Kramer GC. Plasma volume expansion with solutions of hemoglobin, albumin, and Ringer lactate in sheep. Am J Physiol. 1999;276(6):H2194–203. doi:10.1152/ajpheart.1999.276.6.H2194
  • Migita R, Gonzales A, Gonzales ML, Vandegriff KD, Winslow RM. Blood volume and cardiac index in rats after exchange transfusion with hemoglobin-based oxygen carriers. J Appl Physiol. 1997;82(6):1995–2002. doi:10.1152/jappl.1997.82.6.1995
  • Duling BR, Berne RM. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res. 1970;27(5):669–678. doi:10.1161/01.RES.27.5.669
  • Chen G, Duan Y, Liu J, Wang H, Yang C. Antioxidant effects of vitamin C on hemoglobin-based oxygen carriers derived from human cord blood. Artif Cells Nanomed Biotechnol. 2016;44(1):56–61. doi:10.3109/21691401.2015.1111239
  • Chagnon F, Bentourkia M, Lecomte R, Lessard M, Lesur O. Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit Care Med. 2006;34(1):127–133. doi:10.1097/01.CCM.0000190622.02222.DF
  • Berkowitz DE. Myocyte nitroso-redox imbalance in sepsis: NO simple answer. Circ Res. 2007;100(1):1–4. doi:10.1161/01.RES.0000255898.65901.9d
  • Spinella PC. Zero preventable deaths after traumatic injury: an achievable goal. J Trauma Acute Care Surg. 2017;82(6S):S2–S8. doi:10.1097/TA.0000000000001425
  • Eastridge BJ, Hardin M, Cantrell J, et al. Died of wounds on the battlefield: causation and implications for improving combat casualty care. Journal of Trauma: Injury, Infection & Critical Care. 2011;71(1):S4–S8. doi:10.1097/TA.0b013e318221147b
  • Kauvar DS, Wade CE. The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Crit Care. 2005;9(Suppl 5):S1–9. doi:10.1186/cc3779
  • Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J. Lactate clearance and survival following injury. J Trauma. 1993;35(4):584–588. doi:10.1097/00005373-199310000-00014
  • Manikis P, Jankowski S, Zhang H, Kahn RJ, Vincent J-L. Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med. 1995;13(6):619–622. doi:10.1016/0735-6757(95)90043-8
  • Régnier M-A, Raux M, Le Manach Y, et al. Prognostic significance of blood lactate and lactate clearance in trauma patients. Anesthesiology. 2012;117(6):1276–1288. doi:10.1097/ALN.0b013e318273349d
  • Keipert PE. Hemoglobin-Based Oxygen Carrier (HBOC) development in trauma: previous regulatory challenges, lessons learned, and a path forward. Adv Exp Med Biol. 2017;977:343–350.
  • Zhang J, Cao S, Ma L, Hsia C, Koehler R. Abstract 154: protection from transient focal cerebral ischemia by transfusion of polynitroxylated pegylated hemoglobin. Stroke. 2013;44(suppl_1). doi:10.1161/str.44.suppl_1.A154
  • Shellington DK, Du L, Wu X, et al. Polynitroxylated pegylated hemoglobin: a novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice. Crit Care Med. 2011;39(3):494–505.
  • Jahr JS, Akha AS, Holtby RJ. Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: clinical safety and efficacy of recent and current products. Curr Drug Discov Technol. 2012;9(3):158–165. doi:10.2174/157016312802650742
  • Cohen MJ, Kutcher M, Redick B, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(Suppl Supplement 1):S40–7. doi:10.1097/TA.0b013e31828fa43d
  • Defence Visual Information Distribution Service. U.S. Army medical researchers partnering with South African experts on synthetic blood project. Available from: https://www.dvidshub.net/news/311421/us-army-medical-researchers-partnering-with-south-african-experts-synthetic-blood-project. Accessed August 12, 2023.
  • The University of Maryland, Baltimore. Artificial Blood One Step Closer to Reality. Available from: https://www.umaryland.edu/news/archived-news/february-2023/artificial-blood-one-step-closer-to-reality.php. Accessed August 12, 2023.
  • Kaminski J, Hannaert P, Kasil A, et al. Efficacy of the natural oxygen transporter HEMO 2 life® in cold preservation in a preclinical porcine model of donation after cardiac death. Transpl Int. 2019;32(9):985–996. doi:10.1111/tri.13434
  • Hosgood SA, van Heurn E, Nicholson ML. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int. 2015;28(6):657–664.
  • Teh ES, Zal F, Polard V, Menasché P, Chambers DJ. HEMO 2 life as a protective additive to Celsior solution for static storage of donor hearts prior to transplantation. Artif Cells, Nanomed Biotechnol. 2017;45(4):717–722. doi:10.1080/21691401.2016.1265974
  • Kasil A, Giraud S, Couturier P, et al. Individual and combined impact of oxygen and oxygen transporter supplementation during kidney machine preservation in a porcine preclinical kidney transplantation model. Int J Mol Sci. 2019;20(8):1992. doi:10.3390/ijms20081992
  • Le Meur Y, Badet L, Essig M, et al. First-in-human use of a marine oxygen carrier (M101) for organ preservation: a safety and proof-of-principle study. Am J Transplant. 2020;20(6):1729–1738. doi:10.1111/ajt.15798
  • Ferenz KB, Steinbicker AU. Artificial oxygen carriers—past, present, and future—a review of the most innovative and clinically relevant concepts. J Pharmacol Exp Ther. 2019;369(2):300–310. doi:10.1124/jpet.118.254664
  • National Library of Medicine. ClinicalTrials.gov. NCT04181710. Available from: https://clinicaltrials.gov/. Accessed August 12, 2023.
  • Njoku M, St Peter D, Mackenzie CF. Haemoglobin-based oxygen carriers: indications and future applications. Br J Hosp Med. 2015;76(2):78–83. doi:10.12968/hmed.2015.76.2.78
  • Davis JM, El-Haj N, Shah NN, et al. Use of the blood substitute HBOC-201 in critically ill patients during sickle crisis: a three-case series. Transfusion. 2018;58(1):132–137. doi:10.1111/trf.14386
  • Donahue LL, Shapira I, Shander A, Kolitz J, Allen S, Greenburg G. Management of acute anemia in a Jehovah’s Witness patient with acute lymphoblastic leukemia with polymerized bovine hemoglobin-based oxygen carrier: a case report and review of literature. Transfusion. 2010;50(7):1561–1567. doi:10.1111/j.1537-2995.2010.02603.x
  • Gomez MF, Aljure O, Ciancio G, Lynn M. Hemoglobin-based oxygen carrier rescues double-transplant patient from life-threatening anemia. Am J Transplant. 2017;17(7):1941–1944. doi:10.1111/ajt.14226
  • Gannon CJ, Napolitano LM. Severe anemia after gastrointestinal hemorrhage in a Jehovah’s witness: new treatment strategies. Crit Care Med. 2002;30(8):1893–1895. doi:10.1097/00003246-200208000-00036
  • Winslow RM. Clinical Indications for Blood Substitutes and Optimal Properties. London: Elsevier; 2006:115–125.
  • Smani Y. Hemospan: a hemoglobin-based oxygen carrier for potential use as a blood substitute and for the potential treatment of critical limb ischemia. Curr Opin Investig Drugs. 2008;9(9):1009–1019.
  • Fustier C, Chang TM. PEG-PLA nanocapsules containing a nanobiotechnological complex of polyhemoglobin-tyrosinase for the depletion of tyrosine in melanoma: preparation and in vitro characterisation. J Nanomedine Biotherapeutic Discov. 2012;2(1):1–9. doi:10.4172/2155-983X.1000103
  • Wang Y, Chang TM. Nanobiotechnological nanocapsules containing polyhemoglobin-tyrosinase: effects on murine B16F10 melanoma cell proliferation and attachment. J Skin Cancer. 2012;2012:673291. doi:10.1155/2012/673291
  • Han J, Yu M, Dai M, Li H, Xiu R, Liu Q. Decreased expression of MDR1 in PEG-conjugated hemoglobin solution combined cisplatin treatment in a tumor xenograft model. Artif Cells Blood Substit Immobil Biotechnol. 2012;40(4):239–244. doi:10.3109/10731199.2012.663385
  • Shoemaker SA, Gerber MJ, Evans GL, Archer-Paik LE, Scoggin CH. Initial clinical experience with a rationally designed, genetically engineered recombinant human hemoglobin. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):457–465. doi:10.3109/10731199409117874
  • Zhang X, Chen G, Liu Y, Sun L, Sun L, Zhao Y. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901–5908. doi:10.1021/acsnano.0c01059
  • Kuang L, Zhu Y, Zhang J, et al. A novel cross-linked haemoglobin-based oxygen carrier is beneficial to sepsis in rats. Artif Cells Nanomed Biotechnol. 2019;47(1):1496–1504. doi:10.1080/21691401.2019.1602049
  • Taverne Y J, de Wijs-Meijler D, te Lintel Hekkert M, et al. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin. Journal of Applied Physiology. 2017;122(5):1227–1237. doi:10.1152/japplphysiol.00677.2016
  • Silverman TA, Weiskopf RB, Committee P. Hemoglobin-based oxygen carriers: current status and future directions. J Am Soc Anesthesiol. 2009;111(5):946–963.
  • Butt OI, Buehler PW, D'Agnillo F. Differential Induction of Renal Heme Oxygenase and Ferritin in Ascorbate and Nonascorbate Producing Species Transfused with Modified Cell-Free Hemoglobin. Antioxidants & Redox Signaling. 2010;12(2):199–208. doi:10.1089/ars.2009.2798
  • Jahr JS, Mackenzie C, Pearce LB, Pitman A, Greenburg AG. HBOC-201 as an Alternative to Blood Transfusion: Efficacy and Safety Evaluation in a Multicenter Phase III Trial in Elective Orthopedic Surgery. Journal of Trauma: Injury, Infection & Critical Care. 2008;64(6):1484–1497. doi:10.1097/TA.0b013e318173a93f
  • Gomez MF, Aljure O, Ciancio G, Lynn M. Hemoglobin-Based Oxygen Carrier Rescues Double-Transplant Patient From Life-Threatening Anemia. Am J Transplant. 2017;17(7):1941–1944.
  • Korte EA, Pozzi N, Wardrip N, Ayyoubi M, Jortani SA. Analytical interference of HBOC-201 (Hemopure, a synthetic hemoglobin-based oxygen carrier) on four common clinical chemistry platforms. Clinica Chimica Acta. 2018;482:33–39. doi:10.1016/j.cca.2018.03.017
  • Buehler PW, Alayash AI. Oxidation of hemoglobin: mechanisms of control in vitro and in vivo. Transfus Alternat Transfus Med. 2007;9(4):204–212. doi:10.1111/j.1778-428X.2007.00081.x
  • Schaäfer A, Wiesmann F, Neubauer S, Eigenthaler M, Bauersachs J, Channon KM. Rapid Regulation of Platelet Activation In Vivo by Nitric Oxide. Circulation. 2004;109(15):1819–1822. doi:10.1161/01.CIR.0000126837.88743.DD
  • Griffiths E, Cortes A, Gilbert N, Stevenson P, MacDonald S, Pepper D. Haemoglobin-based blood substitutes and sepsis. The Lancet. 1995;345(8943):158–160. doi: 10.1016/S0140-6736(95)90168-X
  • Jahr JS, Nesargi SB, Lewis K, Johnson C. Blood substitutes and oxygen therapeutics: an overview and current status. Am J Ther. 2002;9(5):437–443. doi:10.1097/00045391-200209000-00012
  • Bernard AC, Moore EE, Moore FA, et al. Postinjury resuscitation with human polymerized hemoglobin prolongs early survival: a post hoc analysis. J Trauma. 2011;70(5 Suppl):S34–7. doi:10.1097/TA.0b013e31821a586e
  • Kim-Shapiro DB, Schechter AN, Gladwin MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26(4):697–705. doi:10.1161/01.ATV.0000204350.44226.9a
  • Marrazzo F, Larson G, Sherpa Lama TT, et al. Inhaled nitric oxide prevents systemic and pulmonary vasoconstriction due to hemoglobin-based oxygen carrier infusion: a case report. J Crit Care. 2019;51:213–216. doi:10.1016/j.jcrc.2018.04.008
  • Gould SA, Moore EE, Hoyt DB, et al. The life-sustaining capacity of human polymerized hemoglobin when red cells might be unavailable. J Am Coll Surg. 2002;195(4):445–452. doi:10.1016/S1072-7515(02)01335-2
  • Hsia CJ, Ma L. A hemoglobin-based multifunctional therapeutic: polynitroxylated pegylated hemoglobin. Artif Organs. 2012;36(2):215–220. doi:10.1111/j.1525-1594.2011.01307.x
  • Moallempour M, Jahr JS, Lim JC, Weeks D, Butch A, Driessen B. Methemoglobin effects on coagulation: a dose-response study with HBOC-200 (Oxyglobin) in a thrombelastogram model. J Cardiothorac Vasc Anesth. 2009;23(1):41–47. doi:10.1053/j.jvca.2008.06.006
  • Murphy MF, Wallington TB, Kelsey P, et al. Guidelines for the clinical use of red cell transfusions. Br J Haematol. 2001;113(1):24–31.
  • Kozek-Langenecker SA. The effects of drugs used in anaesthesia on platelet membrane receptors and on platelet function. Curr Drug Targets. 2002;3(3):247–258. doi:10.2174/1389450023347759
  • Posluszny JA, Napolitano LM. Hemoglobin-based oxygen carrier for traumatic hemorrhagic shock treatment in a Jehovah’s witness. Arch Trauma Res. 2016;5(2). doi:10.5812/atr.30610
  • Sarani B, Gracias V. Hemoglobin-based blood substitutes and risk of myocardial infarction and death. JAMA. 2008;300(11):1295–1299. doi:10.1001/jama.300.11.1297-b
  • Kim HW, Jahr JS, Mozzarelli A, Sakai H. International consortium for development of hemoglobin-based oxygen carriers, oxygen therapeutics and multifunctional resuscitation fluids–a white paper. Hemoglobin Based Oxygen Carriers Red Cell Substit Oxygen Therapeut. 2013;2013:737–746.