627
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology

, , , & ORCID Icon
Pages 695-711 | Published online: 03 Mar 2022

References

  • Brown MA, Stenberg LM, Mauk AG. Identification of catalytically important amino acids in human ceruloplasmin by site-directed mutagenesis. FEBS Lett. 2002;520(1–3):8–12. doi:10.1016/S0014-5793(02)02652-2
  • Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics. 2016;8(9):887–905. doi:10.1039/C6MT00103C
  • Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol. 2006;13(3):142–148. doi:10.1016/j.spen.2006.08.002
  • Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439–458. doi:10.1146/annurev.nutr.22.012502.114457
  • Kirsipuu T, Zadorožnaja A, Smirnova J, et al. Copper (II)-binding equilibria in human blood. Sci Rep. 2020;10(1):5686. doi:10.1038/s41598-020-62560-4
  • Chapman AL, Mocatta TJ, Shiva S, et al. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem. 2013;288(9):6465–6477. doi:10.1074/jbc.M112.418970
  • Golizeh M, Lee K, Ilchenko S, et al. Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic Biol Med. 2017;113:461–469. doi:10.1016/j.freeradbiomed.2017.10.373
  • Kim OY, Shin MJ, Moon J, Chung JH. Plasma ceruloplasmin as a biomarker for obesity: a proteomic approach. Clin Biochem. 2011;44(5–6):351–356. doi:10.1016/j.clinbiochem.2011.01.014
  • Daimon M, Yamatani K, Igarashi M, et al. Fine structure of the human ceruloplasmin gene. Biochem Biophys Res Commun. 1995;208(3):1028–1035. doi:10.1006/bbrc.1995.1437
  • Yang F, Naylor SL, Lum JB, et al. Characterization, mapping, and expression of the human ceruloplasmin gene. Proc Natl Acad Sci U S A. 1986;83(10):3257–3261. doi:10.1073/pnas.83.10.3257
  • Bento I, Peixoto C, Zaitsev VN, Lindley PF. Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr D Biol Crystallogr. 2007;63(Pt 2):240–248. doi:10.1107/S090744490604947X
  • Bakhautdin B, Goksoy Bakhautdin E, Fox PL. Ceruloplasmin has two nearly identical sites that bind myeloperoxidase. Biochem Biophys Res Commun. 2014;453(4):722–727. doi:10.1016/j.bbrc.2014.09.134
  • Samygina VR, Sokolov AV, Bourenkov G, et al. Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS One. 2013;8(7):e67145. doi:10.1371/journal.pone.0067145
  • Mukhopadhyay BP. Insights from molecular dynamics simulation of human ceruloplasmin (ferroxidase enzyme) binding with biogenic monoamines. Bioinformation. 2019;15(10):750–759. doi:10.6026/97320630015750
  • Terada K, Kawarada Y, Miura N, Yasui O, Koyama K, Sugiyama T. Copper incorporation into ceruloplasmin in rat livers. Biochim Biophys Acta. 1995;1270(1):58–62. doi:10.1016/0925-4439(94)00072-X
  • Hellman NE, Kono S, Mancini GM, Hoogeboom AJ, De Jong GJ, Gitlin JD. Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem. 2002;277(48):46632–46638. doi:10.1074/jbc.M206246200
  • Ramos D, Mar D, Ishida M, et al. Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLoS One. 2016;11(3):e0149516. doi:10.1371/journal.pone.0149516
  • Marques L, Auriac A, Willemetz A, et al. Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface. Blood Cells Mol Dis. 2012;48(2):110–120. doi:10.1016/j.bcmd.2011.11.005
  • Banha J, Marques L, Oliveira R, et al. Ceruloplasmin expression by human peripheral blood lymphocytes: a new link between immunity and iron metabolism. Free Radic Biol Med. 2008;44(3):483–492.
  • Arner E, Forrest AR, Ehrlund A, et al. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. PLoS One. 2014;9(3):e80274. doi:10.1371/journal.pone.0080274
  • Patel BN, David S. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem. 1997;272(32):20185–20190. doi:10.1074/jbc.272.32.20185
  • Patel BN, Dunn RJ, David S. Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem. 2000;275(6):4305–4310. doi:10.1074/jbc.275.6.4305
  • Ryan F, Zarruk JG, Lößlein L, David S. Ceruloplasmin plays a neuroprotective role in cerebral ischemia. Front Neurosci. 2018;12:988. doi:10.3389/fnins.2018.00988
  • Jeong SY, David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem. 2003;278(29):27144–27148. doi:10.1074/jbc.M301988200
  • Capo CR, Arciello M, Squitti R, et al. Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer’s disease patients. Biometals. 2008;21(3):367–372. doi:10.1007/s10534-007-9125-4
  • Squitti R, Quattrocchi CC, Salustri C, Rossini PM. Ceruloplasmin fragmentation is implicated in “free” copper deregulation of Alzheimer’s disease. Prion. 2008;2(1):23–27. doi:10.4161/pri.2.1.6297
  • Squitti R, Quattrocchi CC, Forno GD, et al. Ceruloplasmin (2-D PAGE) pattern and copper content in serum and brain of Alzheimer disease patients. Biomark Insights. 2007;1:205–213.
  • Siotto M, Simonelli I, Pasqualetti P, et al. Association between serum ceruloplasmin specific activity and risk of Alzheimer's disease. J Alzheimers Dis. 2016;50(4):1181–1189. doi:10.3233/JAD-150611
  • Mostad EJ, Prohaska JR. Glycosylphosphatidylinositol-linked ceruloplasmin is expressed in multiple rodent organs and is lower following dietary copper deficiency. Exp Biol Med (Maywood). 2011;236(3):298–308. doi:10.1258/ebm.2010.010256
  • Broderius MA, Prohaska JR. Differential impact of copper deficiency in rats on blood cuproproteins. Nutr Res. 2009;29(7):494–502. doi:10.1016/j.nutres.2009.06.006
  • Broderius M, Mostad E, Wendroth K, Prohaska JR. Levels of plasma ceruloplasmin protein are markedly lower following dietary copper deficiency in rodents. Comp Biochem Physiol C Toxicol Pharmacol. 2010;151(4):473–479. doi:10.1016/j.cbpc.2010.02.005
  • Vasilyev VB. Interactions of caeruloplasmin with other proteins participating in inflammation. Biochem Soc Trans. 2010;38(4):947–951. doi:10.1042/BST0380947
  • Golenkina EA, Viryasova GM, Galkina SI, Gaponova TV, Sud’ina GF, Sokolov AV. Fine regulation of neutrophil oxidative status and apoptosis by ceruloplasmin and its derivatives. Cells. 2018;7(1). doi:10.3390/cells7010008
  • Sokolov AV, Pulina MO, Ageeva KV, et al. Interaction of ceruloplasmin, lactoferrin, and myeloperoxidase. Biochemistry (Mosc). 2007;72(4):409–415. doi:10.1134/S0006297907040074
  • Ganaraja B, Pavithran P, Ghosh S. Effect of estrogen on plasma ceruloplasmin level in rats exposed to acute stress. Indian J Med Sci. 2004;58(4):150–154.
  • Guller S, Buhimschi CS, Ma YY, et al. Placental expression of ceruloplasmin in pregnancies complicated by severe preeclampsia. Lab Invest. 2008;88(10):1057–1067. doi:10.1038/labinvest.2008.74
  • Dey M, Arora D, Narayan N, Kumar R. Serum cholesterol and ceruloplasmin levels in second trimester can predict development of pre-eclampsia. N Am J Med Sci. 2013;5(1):41–46. doi:10.4103/1947-2714.106198
  • Mukhopadhyay BP. Putative role of conserved water molecules in the hydration and inter-domain recognition of mono nuclear copper centers in O2-bound human ceruloplasmin: a comparative study between X-ray and MD simulated structures. Bioinformation. 2019;15(6):402–411. doi:10.6026/97320630015402
  • Haberska K, Vaz-Domínguez C, De Lacey AL, Dagys M, Reimann CT, Shleev S. Direct electron transfer reactions between human ceruloplasmin and electrodes. Bioelectrochemistry. 2009;76(1–2):34–41. doi:10.1016/j.bioelechem.2009.05.012
  • Stoj C, Kosman DJ. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett. 2003;554(3):422–426. doi:10.1016/S0014-5793(03)01218-3
  • Musci G, Bonaccorsi di Patti MC, Calabrese L. Modulation of the redox state of the copper sites of human ceruloplasmin by chloride. J Protein Chem. 1995;14(7):611–619. doi:10.1007/BF01886887
  • Tian S, Jones SM, Jose A, Solomon EI. Chloride control of the mechanism of human serum ceruloplasmin (Cp) catalysis. J Am Chem Soc. 2019;141(27):10736–10743. doi:10.1021/jacs.9b03661
  • Saenko EL, Siverina OB, Basevich VV, Yaropolov AI. Study of ceruloplasmin oxidase activity. The effect of pH. Biochem Int. 1990;20(6):1049–1058.
  • Gulec S, Collins JF. Molecular mediators governing iron-copper interactions. Annu Rev Nutr. 2014;34:95–116. doi:10.1146/annurev-nutr-071812-161215
  • Arredondo M, Muñoz P, Mura CV, Nùñez MT. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol. 2003;284(6):C1525–1530. doi:10.1152/ajpcell.00480.2002
  • Zheng Y, Li XK, Wang Y, Cai L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin. 2008;32(1–2):135–145. doi:10.1080/03630260701727077
  • Anderson GJ, Wang F. Essential but toxic: controlling the flux of iron in the body. Clin Exp Pharmacol Physiol. 2012;39(8):719–724. doi:10.1111/j.1440-1681.2011.05661.x
  • Tennant J, Stansfield M, Yamaji S, Srai SK, Sharp P. Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Lett. 2002;527(1–3):239–244. doi:10.1016/S0014-5793(02)03253-2
  • Zheng G, Zhang J, Xu Y, et al. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells. Toxicol Lett. 2014;225(1):110–118. doi:10.1016/j.toxlet.2013.11.034
  • Moriya M, Ho YH, Grana A, et al. Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol. 2008;295(3):C708–721. doi:10.1152/ajpcell.00029.2008
  • Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol. 2014;307(4):G397–409. doi:10.1152/ajpgi.00348.2013
  • Lenartowicz M, Krzeptowski W. [Structure and function of ATP7A and ATP7B proteins–Cu-transporting ATPases]. Postepy Biochem. 2010;56(3):317–327. Polish.
  • de Romaña DL, Olivares M, Uauy R, Araya M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol. 2011;25(1):3–13. doi:10.1016/j.jtemb.2010.11.004
  • Bartee MY, Lutsenko S. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals. 2007;20(3–4):627–637. doi:10.1007/s10534-006-9074-3
  • De Filippis V, Vassiliev VB, Beltramini M, Fontana A, Salvato B, Gaitskhoki VS. Evidence for the molten globule state of human apo-ceruloplasmin. Biochim Biophys Acta. 1996;1297(2):119–123. doi:10.1016/S0167-4838(96)00139-2
  • Siotto M, Squitti R. Copper imbalance in Alzheimer’s disease: overview of the exchangeable copper component in plasma and the intriguing role albumin plays. Coord Chem Rev. 2018;371:86–95. doi:10.1016/j.ccr.2018.05.020
  • Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164–174.
  • Aigner E, Feldman A, Datz C. Obesity as an emerging risk factor for iron deficiency. Nutrients. 2014;6(9):3587–3600. doi:10.3390/nu6093587
  • Choi J, Masaratana P, Latunde-Dada GO, Arno M, Simpson RJ, McKie AT. Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J Nutr. 2012;142(11):1929–1934. doi:10.3945/jn.112.160358
  • Chloupková M, Zhang AS, Enns CA. Stoichiometries of transferrin receptors 1 and 2 in human liver. Blood Cells Mol Dis. 2010;44(1):28–33. doi:10.1016/j.bcmd.2009.09.004
  • Anderson GJ, Frazer DM. Hepatic iron metabolism. Semin Liver Dis. 2005;25(4):420–432. doi:10.1055/s-2005-923314
  • De Domenico I, Ward DM, Di Patti MC, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26(12):2823–2831. doi:10.1038/sj.emboj.7601735
  • Musci G, Polticelli F, Bonaccorsi di Patti MC. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem. 2014;5(2):204–215. doi:10.4331/wjbc.v5.i2.204
  • Tan MG, Kumarasinghe MP, Wang SM, Ooi LL, Aw SE, Hui KM. Modulation of iron-regulatory genes in human hepatocellular carcinoma and its physiological consequences. Exp Biol Med (Maywood). 2009;234(6):693–702. doi:10.3181/0807-RM-227
  • Vulpe CD, Kuo YM, Murphy TL, et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999;21(2):195–199. doi:10.1038/5979
  • Vasilyev VB. Looking for a partner: ceruloplasmin in protein-protein interactions. Biometals. 2019;32(2):195–210. doi:10.1007/s10534-019-00189-1
  • Altamura C, Squitti R, Pasqualetti P, et al. Ceruloplasmin/Transferrin system is related to clinical status in acute stroke. Stroke. 2009;40(4):1282–1288. doi:10.1161/STROKEAHA.108.536714
  • Goldstein IM, Kaplan HB, Edelson HS, Weissmann G. Ceruloplasmin: an acute phase reactant that scavenges oxygen-derived free radicals. Ann N Y Acad Sci. 1982;389:368–379. doi:10.1111/j.1749-6632.1982.tb22150.x
  • Ganini D, Canistro D, Jiang J, Stadler K, Mason RP, Kadiiska MB. Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection. Free Radic Biol Med. 2012;53(7):1514–1521. doi:10.1016/j.freeradbiomed.2012.07.013
  • Cerone SI, Sansinanea AS, Streitenberger SA, Garcia MC, Auza NJ. Cytochrome c oxidase, Cu, Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines. Biol Trace Elem Res. 2000;73(3):269–278. doi:10.1385/BTER:73:3:269
  • Inoue K, Akaike T, Miyamoto Y, et al. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem. 1999;274(38):27069–27075. doi:10.1074/jbc.274.38.27069
  • Paradis M, Gagné J, Mateescu MA, Paquin J. The effects of nitric oxide-oxidase and putative glutathione-peroxidase activities of ceruloplasmin on the viability of cardiomyocytes exposed to hydrogen peroxide. Free Radic Biol Med. 2010;49(12):2019–2027. doi:10.1016/j.freeradbiomed.2010.09.030
  • Hellman NE, Kono S, Miyajima H, Gitlin JD. Biochemical analysis of a missense mutation in aceruloplasminemia. J Biol Chem. 2002;277(2):1375–1380. doi:10.1074/jbc.M109123200
  • Kono S, Miyajima H. Molecular and pathological basis of aceruloplasminemia. Biol Res. 2006;39(1):15–23. doi:10.4067/S0716-97602006000100003
  • Miyajima H, Kono S, Takahashi Y, Sugimoto M, Sakamoto M, Sakai N. Cerebellar ataxia associated with heteroallelic ceruloplasmin gene mutation. Neurology. 2001;57(12):2205–2210. doi:10.1212/WNL.57.12.2205
  • Borges MD, de Albuquerque DM, Lanaro C, Costa FF, Fertrin KY. Clinical relevance of heterozygosis for aceruloplasminemia. Am J Med Genet B Neuropsychiatr Genet. 2019;180(4):266–271. doi:10.1002/ajmg.b.32723
  • Corradini E, Buzzetti E, Dongiovanni P, et al. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. J Hepatol. 2021;75(3):506–513. doi:10.1016/j.jhep.2021.03.014
  • Pelucchi S, Ravasi G, Piperno A. Ceruloplasmin variants might have different effects in different iron overload disorders. J Hepatol. 2021;75(4):1003–1004. doi:10.1016/j.jhep.2021.05.005
  • Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of Type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. doi:10.3390/ijms21176275
  • Society CD. Guidelines for the prevention and control of type 2 diabetes in China (2017). Chin J Pract Internal Med. 2018;38(04):292–344.
  • Chacko SK, Cheluvappa R. Increased ceruloplasmin and fibrinogen in type 2 diabetes corresponds to decreased anti-oxidant activity in a preliminary tertiary South Indian hospital study. Exp Clin Endocrinol Diabetes. 2010;118(1):64–67. doi:10.1055/s-0029-1225647
  • Sarkar A, Dash S, Barik BK, et al. Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients. Indian J Clin Biochem. 2010;25(1):74–76. doi:10.1007/s12291-010-0015-0
  • Sharma VK, Tumbapo A, Pant V, et al. Ceruloplasmin, a potential marker for glycemic status and its relationship with lipid profile in Type II diabetes mellitus. Asian J Med Sci. 2018;9(2):13–18. doi:10.3126/ajms.v9i2.19003
  • Rusticeanu M, Zimmer V, Schleithoff L, et al. Novel ceruloplasmin mutation causing aceruloplasminemia with hepatic iron overload and diabetes without neurological symptoms. Clin Genet. 2014;85(3):300–301. doi:10.1111/cge.12145
  • Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41(10):1241–1248. doi:10.1007/s001250051058
  • Odegaard AO, Jacobs DR Jr, Sanchez OA, Goff DC Jr, Reiner AP, Gross MD. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc Diabetol. 2016;15:51. doi:10.1186/s12933-016-0369-6
  • Fizelova M, Jauhiainen R, Kangas AJ, et al. Differential associations of inflammatory markers with insulin sensitivity and secretion: the Prospective METSIM Study. J Clin Endocrinol Metab. 2017;102(9):3600–3609. doi:10.1210/jc.2017-01057
  • Grossmann V, Schmitt VH, Zeller T, et al. Profile of the immune and inflammatory response in individuals with prediabetes and Type 2 diabetes. Diabetes Care. 2015;38(7):1356–1364. doi:10.2337/dc14-3008
  • Everett BM, Donath MY, Pradhan AD, et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol. 2018;71(21):2392–2401. doi:10.1016/j.jacc.2018.03.002
  • Tenenbaum A, Fisman EZ. Mirroring the CANTOS revolution: is anti-inflammatory therapy for diabetes just around the corner? Cardiovasc Diabetol. 2017;16(1):91. doi:10.1186/s12933-017-0573-z
  • Stienstra R, Joosten LA, Koenen T, et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 2010;12(6):593–605. doi:10.1016/j.cmet.2010.11.011
  • Sokolov AV, Zakharova ET, Kostevich VA, Samygina VR, Vasilyev VB. Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes. Biometals. 2014;27(5):815–828. doi:10.1007/s10534-014-9755-2
  • Fardoun RZ. The use of vitamin E in type 2 diabetes mellitus. Clin Exp Hypertens. 2007;29(3):135–148. doi:10.1080/10641960701361601
  • Reddy VP, Zhu X, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis. 2009;16(4):763–774. doi:10.3233/JAD-2009-1013
  • Hernández-Beltrán N, Moreno CB, Gutiérrez-Álvarez AM. Contribution of mitochondria to pain in diabetic neuropathy. Endocrinol Nutr. 2013;60(1):25–32. doi:10.1016/j.endonu.2012.03.005
  • Souza BM, Assmann TS, Kliemann LM, Gross JL, Canani LH, Crispim D. The role of uncoupling protein 2 (UCP2) on the development of type 2 diabetes mellitus and its chronic complications. Arq Bras Endocrinol Metabol. 2011;55(4):239–248. doi:10.1590/S0004-27302011000400001
  • Selvaraju V, Joshi M, Suresh S, Sanchez JA, Maulik N, Maulik G. Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease–an overview. Toxicol Mech Methods. 2012;22(5):330–335. doi:10.3109/15376516.2012.666648
  • Islam KN, Takahashi M, Higashiyama S, Myint T, Uozumi N. Fragmentation of ceruloplasmin following non-enzymatic glycation reaction. J Biochem. 1995;118(5):1054–1060. doi:10.1093/jb/118.5.1054
  • Shukla N, Thompson CS, Angelini GD, Mikhailidis DP, Jeremy JY. Homocysteine enhances impairment of endothelium-dependent relaxation and guanosine cyclic monophosphate formation in aortae from diabetic rabbits. Diabetologia. 2002;45(9):1325–1331. doi:10.1007/s00125-002-0888-4
  • Jeppu AK, Kumar KA, Augusthy A. Plasma glucose and serum ceruloplasmin in metabolic syndrome and diabetes mellitus type 2. Recent Adv Biol Med. 2016;2(2016):651.
  • Srivatsan R, Das S, Gadde R, et al. Antioxidants and lipid peroxidation status in diabetic patients with and without complications. Arch Iran Med. 2009;12(2):121–127.
  • Li M, Fang F. Related analysis on type 2 diabetes and trace elements. Guangdong Trace Elements Sci. 2012;19(3):1–4.
  • Sanjeevi N, Freeland-Graves J, Beretvas SN, Sachdev PK. Trace element status in type 2 diabetes: a meta-analysis. J Clin Diagn Res. 2018;12(5):Oe01–oe08. doi:10.7860/JCDR/2018/35026.11541
  • Liu Q, Sun L, Tan Y, Wang G, Lin X, Cai L. Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr Med Chem. 2009;16(1):113–129. doi:10.2174/092986709787002862
  • Lee EC, Ha E, Singh S, et al. Copper (II)-human amylin complex protects pancreatic cells from amylin toxicity. Phys Chem Chem Phys. 2013;15(30):12558–12571. doi:10.1039/c3cp44542a
  • Lei Y. Effect of Green Tea Polyphenols on Glucose Homeostasis and Its Mechanism in Ceruloplasmin Gene Knockout Mice. Hebei Medical University; 2017.
  • Arredondo M, Fuentes M, Jorquera D, et al. Cross-talk between body iron stores and diabetes: iron stores are associated with activity and microsatellite polymorphism of the heme oxygenase and type 2 diabetes. Biol Trace Elem Res. 2011;143(2):625–636. doi:10.1007/s12011-010-8895-7
  • Bonaccorsi di Patti MC, Cutone A, Polticelli F, et al. The ferroportin-ceruloplasmin system and the mammalian iron homeostasis machine: regulatory pathways and the role of lactoferrin. Biometals. 2018;31(3):399–414. doi:10.1007/s10534-018-0087-5
  • Lee MJ, Jung CH, Kang YM, et al. Serum ceruloplasmin level as a predictor for the progression of diabetic nephropathy in Korean men with Type 2 diabetes mellitus. Diabetes Metab J. 2015;39(3):230–239. doi:10.4093/dmj.2015.39.3.230
  • Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013;124(3):139–152. doi:10.1042/CS20120198
  • Cooper GJ, Young AA, Gamble GD, et al. A copper (II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study. Diabetologia. 2009;52(4):715–722. doi:10.1007/s00125-009-1265-3
  • Adki KM, Kulkarni YA. Potential biomarkers in diabetic retinopathy. Curr Diabetes Rev. 2020;16(9):971–983. doi:10.2174/1573399816666200217092022
  • Chu J, Gao R, Zhao S, Lu G, Zhao D, Li J. 2016 Chinese guideline for the management of dyslipidemia in adults. Chin Circ J. 2016;31(10):937–953.
  • Li W, Zhou C. Advances in studies on hyperlipidemia, atherosclerosis and lipid metabolism. Chin J Pharmacol Toxicol. 2019;33(10):811.
  • Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Primers. 2017;3:17093. doi:10.1038/nrdp.2017.93
  • Rygiel K. Hypertriglyceridemia - common causes, prevention and treatment strategies. Curr Cardiol Rev. 2018;14(1):67–76. doi:10.2174/1573403X14666180123165542
  • Li T, Jiang S, Lu C, et al. Snapshots: endoplasmic reticulum stress in lipid metabolism and cardiovascular disease. Curr Issues Mol Biol. 2018;28:14–28. doi:10.21775/cimb.028.014
  • Cao SS, Luo KL, Shi L. Endoplasmic reticulum stress interacts with inflammation in human diseases. J Cell Physiol. 2016;231(2):288–294. doi:10.1002/jcp.25098
  • Sozen E, Ozer NK. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: an updated mini-review. Redox Biol. 2017;12:456–461. doi:10.1016/j.redox.2017.02.025
  • Lee SY, Hong IK, Kim BR, et al. Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology. 2015;62(1):135–146. doi:10.1002/hep.27804
  • Zhou W, Shen X, Wang L, Zhang Q, Lu Y. Influences of fenofibrate on oxidative stress and endoplasmic reticulum stress in livers of hyperlipidemic rats. J Pract Med. 2014;30(17):2718–2721.
  • Oe S, Miyagawa K, Honma Y, Harada M. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp Cell Res. 2016;347(1):192–200. doi:10.1016/j.yexcr.2016.08.003
  • Kono S, Suzuki H, Oda T, et al. Biochemical features of ceruloplasmin gene mutations linked to aceruloplasminemia. Neuromolecular Med. 2006;8(3):361–374. doi:10.1385/NMM:8:3:361
  • Shen Z. Correlation among blood lipids and main inflammatory factors levels in patients with coronary heart disease complicated hyperlipidemia. Chin J Cardiovasc Rehabil Med. 2017;26(4):388–390.
  • Chen S. Interconnectivity Between the Reaction System of Catalase and Hyperlipidemia. Jilin University; 2013.
  • Anila L, Vijayalakshmi N. Antioxidant action of flavonoids from Mangifera indica and Emblica officinalis in hypercholesterolemic rats. Food Chem. 2003;83(4):569–574. doi:10.1016/S0308-8146(03)00155-9
  • Zhang L, Liu X, Liang W, Zhong C. Study on oxidative stress level in patients with hyperlipidemia. Studies Trace Elements Health. 2016;33(01):9–10.
  • Samokyszyn VM, Miller DM, Reif DW, Aust SD. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J Biol Chem. 1989;264(1):21–26. doi:10.1016/S0021-9258(17)31218-8
  • Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY. Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor? Atherosclerosis. 2006;187(2):238–250. doi:10.1016/j.atherosclerosis.2005.11.035
  • Wang B, Wang XP. Does ceruloplasmin defend against neurodegenerative diseases? Curr Neuropharmacol. 2019;17(6):539–549. doi:10.2174/1570159X16666180508113025
  • Commission N. The report on nutrition and chronic diseases in China (2015) release. Shanghai J Prevent Med. 2016;28(3):141.
  • Chen Y, Zhang Y, Kong Z, Yu J, Sun T, Zhang H. The prevalence of overweight and obesity in children and adolescents in China. Chin J Dis Control Prev. 2017;21(9):866–869, 878.
  • Tajik N, Golpaie A, Keshavarz SA, et al. Decreased plasma levels of ceruloplasmin after diet-induced weight loss in obese women. J Endocrinol Invest. 2012;35(6):566–569. doi:10.3275/7878
  • Moreno-Navarrete JM, Fernández-Real JM. The complement system is dysfunctional in metabolic disease: evidences in plasma and adipose tissue from obese and insulin resistant subjects. Semin Cell Dev Biol. 2019;85:164–172. doi:10.1016/j.semcdb.2017.10.025
  • Ziakas A, Gavrilidis S, Souliou E, et al. Ceruloplasmin is a better predictor of the long-term prognosis compared with fibrinogen, CRP, and IL-6 in patients with severe unstable angina. Angiology. 2009;60(1):50–59. doi:10.1177/0003319708314249
  • Ruggiero C, Ehrenshaft M, Cleland E, Stadler K. High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production. Am J Physiol Endocrinol Metab. 2011;300(6):E1047–1058. doi:10.1152/ajpendo.00666.2010
  • Raffaella C, Francesca B, Italia F, Marina P, Giovanna L, Susanna I. Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance. Obesity. 2008;16(5):958–964. doi:10.1038/oby.2008.10
  • Guo Y, Chen P, Xiao W. Mitochondrial dysfunction and exercise regulation in adipose tissue during obesity. Chin J Biochem Mol Biol. 2020;36(10):1145–1150.
  • Curtis JM, Grimsrud PA, Wright WS, et al. Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes. 2010;59(5):1132–1142.
  • Yuan K, Lin N, Chen H. Relationship between intestinal flora and pathogenesis of obesity. Med Recapitulate. 2018;24(21):4166–4171.
  • Barra NG, Anhê FF, Cavallari JF, Singh AM, Chan DY, Schertzer JD. Micronutrients impact the gut microbiota and blood glucose. J Endocrinol. 2021;250(2):R1–r21. doi:10.1530/JOE-21-0081
  • Mayneris-Perxachs J, Cardellini M, Hoyles L, et al. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome. 2021;9(1):104. doi:10.1186/s40168-021-01052-7
  • Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32(4):550–570. doi:10.1210/er.2010-0030
  • Lehr S, Hartwig S, Lamers D, et al. Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics. 2012;11(1):M111.010504. doi:10.1074/mcp.M111.010504
  • Safavi SM, Ziaei R, Maracy MR. Association of serum ceruloplasmin level with obesity: some components of metabolic syndrome and high-sensitive C-reactive protein in Iran. J Obes. 2012;2012:951093. doi:10.1155/2012/951093
  • Göçmen AY, Sahin E, Semiz E, Gümuşlü S. Is elevated serum ceruloplasmin level associated with increased risk of coronary artery disease? Can J Cardiol. 2008;24(3):209–212. doi:10.1016/S0828-282X(08)70586-5
  • Mori T, Sasaki J, Kawaguchi H, et al. Serum glycoproteins and severity of coronary atherosclerosis. Am Heart J. 1995;129(2):234–238. doi:10.1016/0002-8703(95)90003-9
  • Reunanen A, Knekt P, Aaran RK. Serum ceruloplasmin level and the risk of myocardial infarction and stroke. Am J Epidemiol. 1992;136(9):1082–1090. doi:10.1093/oxfordjournals.aje.a116573
  • Mänttäri M, Manninen V, Hurrunen JK, et al. Serum ferritin and ceruloplasmin as coronary risk factors. Eur Heart J. 1994;15(12):1599–1603. doi:10.1093/oxfordjournals.eurheartj.a060440
  • Enbergs A, Dorszewski A, Luft M, et al. Failure to confirm ferritin and caeruloplasmin as risk factors for the angiographic extent of coronary arteriosclerosis. Coron Artery Dis. 1998;9(2–3):119–124.
  • Klipstein-Grobusch K, Grobbee DE, Koster JF, et al. Serum caeruloplasmin as a coronary risk factor in the elderly: the Rotterdam Study. Br J Nutr. 1999;81(2):139–144. doi:10.1017/S0007114599000276
  • Engström G, Stavenow L, Hedblad B, et al. Inflammation-sensitive plasma proteins and incidence of myocardial infarction in men with low cardiovascular risk. Arterioscler Thromb Vasc Biol. 2003;23(12):2247–2251. doi:10.1161/01.ATV.0000102924.11767.8D
  • Engström G, Hedblad B, Stavenow L, et al. Fatality of future coronary events is related to inflammation-sensitive plasma proteins: a population-based prospective cohort study. Circulation. 2004;110(1):27–31. doi:10.1161/01.CIR.0000133277.88655.00
  • Verma VK, Ramesh V, Tewari S, Gupta RK, Sinha N, Pandey CM. Role of bilirubin, vitamin C and ceruloplasmin as antioxidants in coronary artery disease [CAD]. Indian J Clin Biochem. 2005;20(2):68–74. doi:10.1007/BF02867403
  • Brunetti ND, Pellegrino PL, Correale M, De Gennaro L, Cuculo A, Di Biase M. Acute phase proteins and systolic dysfunction in subjects with acute myocardial infarction. J Thromb Thrombolysis. 2008;26(3):196–202. doi:10.1007/s11239-007-0088-7
  • Deepa M, Pasupathi P, Sankar KB, Rani P, Kumar SP. Free radicals and antioxidant status in acute myocardial infarction patients with and without diabetes mellitus. Bangladesh Med Res Counc Bull. 2009;35(3):95–100. doi:10.3329/bmrcb.v35i3.2999
  • Kumar A, Nagtilak S, Sivakanesan R, Gunasekera S. Cardiovascular risk factors in elderly normolipidemic acute myocardial infarct patients–a case controlled study from India. Southeast Asian J Trop Med Public Health. 2009;40(3):581–592.
  • Tang WH, Wu Y, Nicholls SJ, et al. Subclinical myocardial necrosis and cardiovascular risk in stable patients undergoing elective cardiac evaluation. Arterioscler Thromb Vasc Biol. 2010;30(3):634–640. doi:10.1161/ATVBAHA.109.201210
  • Tang WH, Wu Y, Hartiala J, et al. Clinical and genetic association of serum ceruloplasmin with cardiovascular risk. Arterioscler Thromb Vasc Biol. 2012;32(2):516–522. doi:10.1161/ATVBAHA.111.237040
  • Xu Y, Lin H, Zhou Y, Cheng G, Xu G. Ceruloplasmin and the extent of heart failure in ischemic and nonischemic cardiomyopathy patients. Mediators Inflamm. 2013;2013:348145. doi:10.1155/2013/348145
  • Grammer TB, Kleber ME, Silbernagel G, et al. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Free Radic Res. 2014;48(6):706–715. doi:10.3109/10715762.2014.901510
  • Daybanyrova LV, Shevchenko OP. Clinical significance levels of c-reactive protein and ceruloplasmin in patients with ischemic heart disease. Wiad Lek. 2015;68(4):517–519.
  • Bao X, Borné Y, Johnson L, et al. Comparing the inflammatory profiles for incidence of diabetes mellitus and cardiovascular diseases: a prospective study exploring the “common soil” hypothesis. Cardiovasc Diabetol. 2018;17(1):87. doi:10.1186/s12933-018-0733-9