793
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Disrupted Alpha-Ketoglutarate Homeostasis: Understanding Kidney Diseases from the View of Metabolism and Beyond

, , , , ORCID Icon &
Pages 1961-1974 | Published online: 27 Jun 2022

References

  • Hewitson TD, Smith ER. A Metabolic reprogramming of glycolysis and glutamine metabolism is a requisite for renal fibrogenesis—why and how? Front Physiol. 2021;12:645857. doi:10.3389/fphys.2021.645857
  • Tokonami N, Morla L, Centeno G, et al. Alpha-ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. J Clin Invest. 2013;123(7):3166–3171. doi:10.1172/JCI67562
  • Legeai C, Durand L, Savoye E, Macher MA, Bastien O. Effect of preservation solutions for static cold storage on kidney transplantation outcomes: a national registry study. Am J Transplant. 2020;20(12):3426–3442. doi:10.1111/ajt.15995
  • Gyanwali B, Lim ZX, Soh J, et al. Alpha-ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol Metab. 2022;33(2):136–146. doi:10.1016/j.tem.2021.11.003
  • Zhang GF, Jensen MV, Gray SM, et al. Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion. Cell Metab. 2021;33(4):804–817 e805. doi:10.1016/j.cmet.2020.11.020
  • Al-Khallaf H. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci. 2017;7:37. doi:10.1186/s13578-017-0165-3
  • Dorai T, Dorai B, Pinto JT, Grasso M, Cooper AJL. High levels of glutaminase ii pathway enzymes in normal and cancerous prostate suggest a role in ‘glutamine addiction’. Biomolecules. 2019;10(1):548. doi:10.3390/biom10010002
  • Yang L, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng. 2017;19:163–194. doi:10.1146/annurev-bioeng-071516-044546
  • Dorai T, Pinto JT, Denton TT, Krasnikov BF, Cooper AJL. The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Anal Biochem. 2020;1:114083. doi:10.1016/j.ab.2020.114083
  • Dorai T, Pinto JT, Denton TT, Krasnikov BF, Cooper AJL. The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Anal Biochem. 2022;644:114083. doi:10.1016/j.ab.2020.114083
  • Rinaldi G, Pranzini E, Van Elsen J, et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mtorc1 inhibition. Mol Cell. 2021;81(2):386–397e387. doi:10.1016/j.molcel.2020.11.027
  • Cheng ZX, Guo C, Chen ZG, et al. Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing. Nat Commun. 2019;10(1):3325. doi:10.1038/s41467-019-11129-5
  • Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16(10):650–662. doi:10.1038/nrc.2016.81
  • Hou Y, Wang L, Ding B, et al. Alpha-ketoglutarate and intestinal function. Front Biosci. 2011;16(3):1186–1196. doi:10.2741/3783
  • Wernerman J, Hammarqvist F, Vinnars E. Alpha-ketoglutarate and postoperative muscle catabolism. Lancet. 1990;335(8691):701–703. doi:10.1016/0140-6736(90)90811-i
  • Yuan Y, Zhu C, Wang Y, et al. Alpha-ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling. Sci Adv. 2022;8(18):eabn2879. doi:10.1126/sciadv.abn2879
  • Xiao D, Zeng L, Yao K, Kong X, Wu G, Yin Y. The glutamine-alpha-ketoglutarate (akg) metabolism and its nutritional implications. Amino Acids. 2016;48(9):2067–2080. doi:10.1007/s00726-016-2254-8
  • Madala HR, Helenius IT, Zhou W, et al. Nitrogen trapping as a therapeutic strategy in tumors with mitochondrial dysfunction. Cancer Res. 2020;80(17):3492–3506. doi:10.1158/0008-5472.CAN-20-0246
  • Albaugh VL, Mukherjee K, Barbul A. Proline precursors and collagen synthesis: biochemical challenges of nutrient supplementation and wound healing. J Nutr. 2017;147(11):2011–2017. doi:10.3945/jn.117.256404
  • Wu N, Yang M, Gaur U, Xu H, Yao Y, Li D. Alpha-ketoglutarate: physiological functions and applications. Biomol Ther (Seoul). 2016;24(1):1–8. doi:10.4062/biomolther.2015.078
  • Mullen AR, Wheaton WW, Jin ES, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2011;481(7381):385–388. doi:10.1038/nature10642
  • Marino G, Pietrocola F, Kong Y, et al. Dimethyl alpha-ketoglutarate inhibits maladaptive autophagy in pressure overload-induced cardiomyopathy. Autophagy. 2014;10(5):930–932. doi:10.4161/auto.28235
  • Sun P, Liu Y, Ma T, Ding J. Structure and allosteric regulation of human nad-dependent isocitrate dehydrogenase. Cell Discov. 2020;6(1):94. doi:10.1038/s41421-020-00220-7
  • Han T, Zhan W, Gan M, et al. Phosphorylation of glutaminase by pkcepsilon is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Res. 2018;28(6):655–669. doi:10.1038/s41422-018-0021-y
  • Tong Y, Guo D, Lin SH, et al. Sucla2-coupled regulation of gls succinylation and activity counteracts oxidative stress in tumor cells. Mol Cell. 2021;81(11):2303–2316e2308. doi:10.1016/j.molcel.2021.04.002
  • Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2335–2345. doi:10.1098/rstb.2005.1764
  • Baracco EE, Castoldi F, Durand S, et al. Alpha-ketoglutarate inhibits autophagy. Aging. 2019;11(11):3418–3431. doi:10.18632/aging.102001
  • Aussel C, Coudray-Lucas C, Lasnier E, Cynober L, Ekindjian OG. Alpha-ketoglutarate uptake in human fibroblasts. Cell Biol Int. 1996;20(5):359–363. doi:10.1006/cbir.1996.0042
  • Dantzler WH. Renal organic anion transport: a comparative and cellular perspective. Biochim Biophys Acta. 2002;1566(1–2):169–181. doi:10.1016/s0005-2736(02)00599-0
  • He W, Miao FJ, Lin DC, et al. Citric acid cycle intermediates as ligands for orphan g-protein-coupled receptors. Nature. 2004;429(6988):188–193. doi:10.1038/nature02488
  • Qi AD, Harden TK, Nicholas RA. Gpr80/99, proposed to be the p2y(15) receptor activated by adenosine and amp, is not a p2y receptor. Purinergic Signal. 2004;1(1):67–74. doi:10.1007/s11302-004-5069-0
  • Dabek M, Kruszewska D, Filip R, et al. Alpha-ketoglutarate (akg) absorption from pig intestine and plasma pharmacokinetics. J Anim Physiol Anim Nutr (Berl). 2005;89(11–12):419–426. doi:10.1111/j.1439-0396.2005.00566.x
  • Velvizhi S, Dakshayani KB, Subramanian P. Effects of alpha-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Nutrition. 2002;18(9):747–750. doi:10.1016/s0899-9007(02)00825-0
  • Zheng J, Xiao H, Duan Y, et al. Roles of amino acid derivatives in the regulation of obesity. Food Funct. 2021;12(14):6214–6225. doi:10.1039/d1fo00780g
  • Aljaylani A, Fluitt M, Piselli A, Shepard BD, Tiwari S, Ecelbarger CM. Acid loading unmasks glucose homeostatic instability in proximal-tubule-targeted insulin/insulin-like-growth-factor-1 receptor dual knockout mice. Cell Physiol Biochem. 2020;54(4):682–695. doi:10.33594/000000248
  • Hou Y, Yao K, Wang L, et al. Effects of alpha-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br J Nutr. 2011;106(3):357–363. doi:10.1017/S0007114511000249
  • Vatrinet R, Leone G, De Luise M, et al. The alpha-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab. 2017;5:3. doi:10.1186/s40170-017-0165-0
  • Chin RM, Fu X, Pai MY, et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and tor. Nature. 2014;510(7505):397–401. doi:10.1038/nature13264
  • Yang Y, He P, Hou Y, Liu Z, Zhang X, Li N. Osmundacetone modulates mitochondrial metabolism in non-small cell lung cancer cells by hijacking the glutamine/glutamate/alpha-kg metabolic axis. Phytomedicine. 2022;100:154075. doi:10.1016/j.phymed.2022.154075
  • Lenzen S, Schmidt W, Rustenbeck I, Panten U. 2-ketoglutarate generation in pancreatic b-cell mitochondria regulates insulin secretory action of amino acids and 2-keto acids. Biosci Rep. 1986;6(2):163–169. doi:10.1007/BF01115002
  • Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.
  • Hoang M, Joseph JW. The role of alpha-ketoglutarate and the hypoxia sensing pathway in the regulation of pancreatic beta-cell function. Islets. 2020;12(5):108–119. doi:10.1080/19382014.2020.1802183
  • Song J, Ma D, Xing Y, et al. Alpha-ketoglutarate promotes pancreatic progenitor-like cell proliferation. Int J Mol Sci. 2018;19:4. doi:10.3390/ijms19040943
  • Merlin ME, Campello AP, Kluppel ML. Enalapril maleate affects 2-oxoglutarate metabolism in mitochondria from the rat kidney cortex. Cell Biochem Funct. 1994;12(1):21–28. doi:10.1002/cbf.290120104
  • Miller RA, Shi Y, Lu W, et al. Targeting hepatic glutaminase activity to ameliorate hyperglycemia. Nat Med. 2018;24(4):518–524. doi:10.1038/nm.4514
  • Verissimo T, Faivre A, Rinaldi A, et al. Decreased renal gluconeogenesis is a hallmark of chronic kidney disease. J Am Soc Nephrol. 2022;33(4):810–827. doi:10.1681/ASN.2021050680
  • Wesson DE, Buysse JM, Bushinsky DA. Mechanisms of metabolic acidosis-induced kidney injury in chronic kidney disease. J Am Soc Nephrol. 2020;31(3):469–482. doi:10.1681/ASN.2019070677
  • Bugarski M, Ghazi S, Polesel M, Martins JR, Hall AM. Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury. J Am Soc Nephrol. 2021;32(2):342–356. doi:10.1681/ASN.2020071003
  • Curthoys NP, Gstraunthaler G. Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol. 2001;281(3):F381–390. doi:10.1152/ajprenal.2001.281.3.F381
  • Xu Y, Zhang Y, Garcia-Canaveras JC, et al. Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science. 2020;369(6502):397–403. doi:10.1126/science.abb4467
  • TeSlaa T, Chaikovsky AC, Lipchina I, et al. Alpha-ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 2016;24(3):485–493. doi:10.1016/j.cmet.2016.07.002
  • Lazzeri E, Angelotti ML, Peired A, et al. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat Commun. 2018;9(1):1344. doi:10.1038/s41467-018-03753-4
  • Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2(3):284–291. doi:10.1016/j.stem.2008.01.014
  • Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 2003;22(1):15–24. doi:10.1016/s0945-053x(03)00006-4
  • Ge J, Cui H, Xie N, et al. Glutaminolysis promotes collagen translation and stability via alpha-ketoglutarate-mediated mtor activation and proline hydroxylation. Am J Respir Cell Mol Biol. 2018;58(3):378–390. doi:10.1165/rcmb.2017-0238OC
  • Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–1040. doi:10.1038/nm.2807
  • Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005;365(9457):417–430. doi:10.1016/S0140-6736(05)17831-3
  • Austgen TR, Chen MK, Moore W, Souba WW. Endotoxin and renal glutamine metabolism. Arch Surg. 1991;126(1):23–27. doi:10.1001/archsurg.1991.01410250027003
  • Wang L, Hou Y, Yi D, et al. Dietary supplementation with glutamate precursor alpha-ketoglutarate attenuates lipopolysaccharide-induced liver injury in young pigs. Amino Acids. 2015;47(7):1309–1318. doi:10.1007/s00726-015-1966-5
  • Matsuzaki T, Watanabe H, Yoshitome K, et al. Downregulation of organic anion transporters in rat kidney under ischemia/reperfusion-induced acute [corrected] renal failure. Kidney Int. 2007;71(6):539–547. doi:10.1038/sj.ki.5002104
  • Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci U S A. 2000;97(6):2826–2831. doi:10.1073/pnas.97.6.2826
  • Weinberg JM, Venkatachalam MA, Roeser NF, et al. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am J Physiol Renal Physiol. 2000;279(5):F927–943. doi:10.1152/ajprenal.2000.279.5.F927
  • Cheng MX, Cao D, Chen Y, Li JZ, Tu B, Gong JP. Alpha-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats. Biomed Pharmacother. 2019;111:1141–1146. doi:10.1016/j.biopha.2018.12.149
  • Bienholz A, Petrat F, Wenzel P, et al. Adverse effects of alpha-ketoglutarate/malate in a rat model of acute kidney injury. Am J Physiol Renal Physiol. 2012;303(1):F56–63. doi:10.1152/ajprenal.00070.2012
  • Li L, Kang H, Zhang Q, D’Agati VD, Al-Awqati Q, Lin F. Foxo3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129(6):2374–2389. doi:10.1172/JCI122256
  • Bhattacharya R, Satpute RM, Hariharakrishnan J, Tripathi H, Saxena PB. Acute toxicity of some synthetic cyanogens in rats and their response to oral treatment with alpha-ketoglutarate. Food Chem Toxicol. 2009;47(9):2314–2320. doi:10.1016/j.fct.2009.06.020
  • Bhattacharya R, Rao P, Singh P, et al. Biochemical, oxidative and histological changes caused by sub-acute oral exposure of some synthetic cyanogens in rats: ameliorative effect of alpha-ketoglutarate. Food Chem Toxicol. 2014;67:201–211. doi:10.1016/j.fct.2014.02.038
  • Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The pkm2 activator tepp-46 suppresses kidney fibrosis via inhibition of the emt program and aberrant glycolysis associated with suppression of hif-1alpha accumulation. J Diabetes Investig. 2021;12(5):697–709. doi:10.1111/jdi.13478
  • Sas KM, Kayampilly P, Byun J, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016;1(15):e86976. doi:10.1172/jci.insight.86976
  • Baek J, Pennathur S. Urinary 2-hydroxyglutarate enantiomers are markedly elevated in a murine model of type 2 diabetic kidney disease. Metabolites. 2021;11:8. doi:10.3390/metabo11080469
  • Liang WD, Huang PJ, Xiong LH, et al. Metabolomics and its application in the mechanism analysis on diabetic bone metabolic abnormality. Eur Rev Med Pharmacol Sci. 2020;24(18):9591–9600. doi:10.26355/eurrev_202009_23047
  • Gordin D, Shah H, Shinjo T, et al. Characterization of glycolytic enzymes and pyruvate kinase m2 in type 1 and 2 diabetic nephropathy. Diabetes Care. 2019;42(7):1263–1273. doi:10.2337/dc18-2585
  • Qi W, Keenan HA, Li Q, et al. Pyruvate kinase m2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23(6):753–762. doi:10.1038/nm.4328
  • You YH, Quach T, Saito R, Pham J, Sharma K. Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J Am Soc Nephrol. 2016;27(2):466–481. doi:10.1681/ASN.2015030302
  • Liu JJ, Liu S, Gurung RL, et al. Urine tricarboxylic acid cycle metabolites predict progressive chronic kidney disease in type 2 diabetes. J Clin Endocrinol Metab. 2018;103(12):4357–4364. doi:10.1210/jc.2018-00947
  • Wang Z, Xu R, Shen G, Feng J. Metabolic response in rabbit urine to occurrence and relief of unilateral ureteral obstruction. J Proteome Res. 2018;17(9):3184–3194. doi:10.1021/acs.jproteome.8b00304
  • Su Y, Wang T, Wu N, et al. Alpha-ketoglutarate extends drosophila lifespan by inhibiting mtor and activating AMPK. Aging. 2019;11(12):4183–4197. doi:10.18632/aging.102045
  • Asadi Shahmirzadi A, Edgar D, Liao CY, et al. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab. 2020;32(3):447–456 e446. doi:10.1016/j.cmet.2020.08.004
  • Tian Q, Zhao J, Yang Q, et al. Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice. Aging Cell. 2020;19(1):e13059. doi:10.1111/acel.13059
  • Harrison AP, Pierzynowski SG. Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the art–review article. J Physiol Pharmacol. 2008;59:91–106.
  • Demidenko O, Barardo D, Budovskii V, et al. Rejuvant®, a potential life-extending compound formulation with alpha-ketoglutarate and vitamins, conferred an average 8 year reduction in biological aging, after an average of 7 months of use, in the truage DNA methylation test. Aging. 2021;13(22):24485–24499. doi:10.18632/aging.203736
  • Shao J, Shi T, Yu H, et al. Cytosolic gdh1 degradation restricts protein synthesis to sustain tumor cell survival following amino acid deprivation. EMBO J. 2022;41(2):e110306. doi:10.15252/embj.2021110306
  • Morris J, Yashinskie JJ, Koche R, et al. Alpha-ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573(7775):595–599. doi:10.1038/s41586-019-1577-5
  • Mao L, Chen J, Lu X, et al. Proteomic analysis of lung cancer cells reveals a critical role of bcat1 in cancer cell metastasis. Theranostics. 2021;11(19):9705–9720. doi:10.7150/thno.61731
  • Tran TQ, Hanse EA, Habowski AN, et al. Alpha-ketoglutarate attenuates wnt signaling and drives differentiation in colorectal cancer. Nat Cancer. 2020;1(3):345–358. doi:10.1038/s43018-020-0035-5
  • Yong C, Stewart GD, Frezza C. Oncometabolites in renal cancer. Nat Rev Nephrol. 2020;16(3):156–172. doi:10.1038/s41581-019-0210-z
  • Liu Y, Yang C. Oncometabolites in cancer: current understanding and challenges. Cancer Res. 2021;81(11):2820–2823. doi:10.1158/0008-5472.CAN-20-3730
  • Jamalpoor A, van Gelder CA, Yousef Yengej FA, et al. Cysteamine-bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Mol Med. 2021;13(7):e13067. doi:10.15252/emmm.202013067
  • Perna AF, Zayed MA, Massry SG. Impaired activity of alpha-ketoglutarate dehydrogenase of heart mitochondria in chronic renal failure: role of secondary hyperparathyroidism. Nephron. 1991;59(2):221–225. doi:10.1159/000186554
  • Riedel E, Hampl H, Steudle V, Nundel M. Calcium alpha-ketoglutarate administration to malnourished hemodialysis patients improves plasma arginine concentrations. Miner Electrolyte Metab. 1996;22(1–3):119–122.
  • Chen PM, Wilson PC, Shyer JA, et al. Kidney tissue hypoxia dictates t cell-mediated injury in murine lupus nephritis. Sci Transl Med. 2020;12:538. doi:10.1126/scitranslmed.aay1620
  • Liu PS, Wang H, Li X, et al. Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017;18(9):985–994. doi:10.1038/ni.3796
  • Howson LJ, Li J, von Borstel A, et al. Mucosal-associated invariant t cell effector function is an intrinsic cell property that can be augmented by the metabolic cofactor alpha-ketoglutarate. J Immunol. 2021;206(7):1425–1435. doi:10.4049/jimmunol.2001048
  • Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls b cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. doi:10.1038/s41467-019-11002-5
  • Zaslona Z, O’Neill LAJ. Cytokine-like roles for metabolites in immunity. Mol Cell. 2020;78(5):814–823. doi:10.1016/j.molcel.2020.04.002
  • Duran RV, Oppliger W, Robitaille AM, et al. Glutaminolysis activates rag-mtorc1 signaling. Mol Cell. 2012;47(3):349–358. doi:10.1016/j.molcel.2012.05.043
  • Chai M, Jiang M, Vergnes L, et al. Stimulation of hair growth by small molecules that activate autophagy. Cell Rep. 2019;27(12):3413–3421 e3413. doi:10.1016/j.celrep.2019.05.070
  • Shrimali NM, Agarwal S, Kaur S, et al. Alpha-ketoglutarate inhibits thrombosis and inflammation by prolyl hydroxylase-2 mediated inactivation of phospho-akt. EBioMedicine. 2021;73:103672. doi:10.1016/j.ebiom.2021.103672
  • Zhang Z, He C, Gao Y, et al. Alpha-ketoglutarate delays age-related fertility decline in mammals. Aging Cell. 2021;20(2):e13291. doi:10.1111/acel.13291
  • Jin L, Chun J, Pan C, et al. The plag1-gdh1 axis promotes anoikis resistance and tumor metastasis through camkk2-AMPK signaling in lkb1-deficient lung cancer. Mol Cell. 2018;69(1):87–99e87. doi:10.1016/j.molcel.2017.11.025
  • Charitou P, Rodriguez-Colman M, Gerrits J, et al. Foxos support the metabolic requirements of normal and tumor cells by promoting idh1 expression. EMBO Rep. 2015;16(4):456–466. doi:10.15252/embr.201439096
  • Hong YA, Kim JE, Jo M, Ko GJ. The role of sirtuins in kidney diseases. Int J Mol Sci. 2020;21:18. doi:10.3390/ijms21186686
  • Morigi M, Perico L, Benigni A. Sirtuins in renal health and disease. J Am Soc Nephrol. 2018;29(7):1799–1809. doi:10.1681/ASN.2017111218
  • Wang Q, Xu J, Li X, et al. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the erk-opa1 signaling pathway. J Cell Physiol. 2019;234(12):23495–23506. doi:10.1002/jcp.28918
  • Zhou W, Hu G, He J, et al. Senp1-sirt3 signaling promotes alpha-ketoglutarate production during m2 macrophage polarization. Cell Rep. 2022;39(2):110660. doi:10.1016/j.celrep.2022.110660
  • He L, Wu J, Tang W, et al. Prevention of oxidative stress by alpha-ketoglutarate via activation of car signaling and modulation of the expression of key antioxidant-associated targets in vivo and in vitro. J Agric Food Chem. 2018;66(43):11273–11283. doi:10.1021/acs.jafc.8b04470
  • Hagos Y, Schley G, Schodel J, et al. Alpha-ketoglutarate-related inhibitors of hif prolyl hydroxylases are substrates of renal organic anion transporters 1 (OAT1) and 4 (OAT4). Pflugers Arch. 2012;464(4):367–374. doi:10.1007/s00424-012-1140-9
  • Wen YA, Xiong X, Scott T, et al. The mitochondrial retrograde signaling regulates wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ. 2019;26(10):1955–1969. doi:10.1038/s41418-018-0265-6
  • Rossmann MP, Hoi K, Chan V, et al. Cell-specific transcriptional control of mitochondrial metabolism by tif1gamma drives erythropoiesis. Science. 2021;372(6543):716–721. doi:10.1126/science.aaz2740
  • Chisolm DA, Savic D, Moore AJ, et al. Ccctc-binding factor translates interleukin 2- and alpha-ketoglutarate-sensitive metabolic changes in t cells into context-dependent gene programs. Immunity. 2017;47(2):251–267e257. doi:10.1016/j.immuni.2017.07.015
  • Kalawaj K, Slawinska-Brych A, Mizerska-Kowalska M, et al. Alpha ketoglutarate exerts in vitro anti-osteosarcoma effects through inhibition of cell proliferation, induction of apoptosis via the jnk and caspase 9-dependent mechanism, and suppression of tgf-beta and VEGF production and metastatic potential of cells. Int J Mol Sci. 2020;21:24. doi:10.3390/ijms21249406
  • Zurek A, Mizerska-Kowalska M, Slawinska-Brych A, et al. Alpha ketoglutarate exerts a pro-osteogenic effect in osteoblast cell lines through activation of jnk and mtor/s6k1/s6 signaling pathways. Toxicol Appl Pharmacol. 2019;374:53–64. doi:10.1016/j.taap.2019.04.024
  • Lukey MJ, Greene KS, Erickson JW, Wilson KF, Cerione RA. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. Nat Commun. 2016;7:11321. doi:10.1038/ncomms11321
  • Wang X, Liu R, Qu X, et al. Alpha-ketoglutarate-activated nf-kappab signaling promotes compensatory glucose uptake and brain tumor development. Mol Cell. 2019;76(1):148–162 e147. doi:10.1016/j.molcel.2019.07.007
  • Nowak G, Clifton GL, Godwin ML, Bakajsova D. Activation of erk1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells. Am J Physiol Renal Physiol. 2006;291(4):F840–855. doi:10.1152/ajprenal.00219.2005
  • Stifel U, Wolfschmitt EM, Vogt J, et al. Glucocorticoids coordinate macrophage metabolism through the regulation of the tricarboxylic acid cycle. Mol Metab. 2022;57:101424. doi:10.1016/j.molmet.2021.101424
  • Dyczynski M, Vesterlund M, Bjorklund AC, et al. Metabolic reprogramming of acute lymphoblastic leukemia cells in response to glucocorticoid treatment. Cell Death Dis. 2018;9(9):846. doi:10.1038/s41419-018-0625-7
  • Xu L, Yang TY, Zhou YW, et al. Bmal1 inhibits phenotypic transformation of hepatic stellate cells in liver fibrosis via idh1/alpha-kg-mediated glycolysis. Acta Pharmacol Sin. 2022;43(2):316–329. doi:10.1038/s41401-021-00658-9
  • Cao Y, Lin SH, Wang Y, Chin YE, Kang L, Mi J. Glutamic pyruvate transaminase gpt2 promotes tumorigenesis of breast cancer cells by activating sonic hedgehog signaling. Theranostics. 2017;7(12):3021–3033. doi:10.7150/thno.18992
  • Peng Y, Pei H. DNA alkylation lesion repair: outcomes and implications in cancer chemotherapy. J Zhejiang Univ Sci B. 2021;22(1):47–62. doi:10.1631/jzus.B2000344
  • Silas Y, Singer E, Das K, Lehming N, Pines O. A combination of class-I fumarases and metabolites (alpha-ketoglutarate and fumarate) signal the DNA damage response in Escherichia coli. Proc Natl Acad Sci U S A. 2021;118:23. doi:10.1073/pnas.2026595118
  • Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. Oxidative demethylation by Escherichia coli alkb directly reverts DNA base damage. Nature. 2002;419(6903):174–178. doi:10.1038/nature00908
  • Kurowski MA, Bhagwat AS, Papaj G, Bujnicki JM. Phylogenomic identification of five new human homologs of the DNA repair enzyme alkb. BMC Genomics. 2003;4(1):48. doi:10.1186/1471-2164-4-48
  • Swann PF, Kaufman DG, Magee PN, Mace R. Induction of kidney tumours by a single dose of dimethylnitrosamine: dose response and influence of diet and benzo(a)pyrene pretreatment. Br J Cancer. 1980;41(2):285–294. doi:10.1038/bjc.1980.41
  • Tran TQ, Ishak Gabra MB, Lowman XH, et al. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of alkbh enzymes. PLoS Biol. 2017;15(11):e2002810. doi:10.1371/journal.pbio.2002810
  • Rosic S, Amouroux R, Requena CE, et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat Genet. 2018;50(3):452–459. doi:10.1038/s41588-018-0061-8
  • Marumo T, Yagi S, Kawarazaki W, et al. Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney. J Am Soc Nephrol. 2015;26(10):2388–2397. doi:10.1681/ASN.2014070665
  • Hausinger RP. Feii/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol. 2004;39(1):21–68. doi:10.1080/10409230490440541
  • Purslow JA, Nguyen TT, Khatiwada B, Singh A, Venditti V. N (6)-methyladenosine binding induces a metal-centered rearrangement that activates the human RNA demethylase alkbh5. Sci Adv. 2021;7:34. doi:10.1126/sciadv.abi8215
  • Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by mll partner tet1. Science. 2009;324(5929):930–935. doi:10.1126/science.1170116
  • Spoto B, Mattace-Raso F, Sijbrands E, et al. The fat-mass and obesity-associated gene (fto) predicts mortality in chronic kidney disease of various severity. Nephrol Dial Transplant. 2012;27(Suppl 4):iv58–62. doi:10.1093/ndt/gfs550
  • Stegen S, Laperre K, Eelen G, et al. Hif-1alpha metabolically controls collagen synthesis and modification in chondrocytes. Nature. 2019;565(7740):511–515. doi:10.1038/s41586-019-0874-3
  • Brinkley G, Nam H, Shim E, et al. Teleological role of l-2-hydroxyglutarate dehydrogenase in the kidney. Dis Model Mech. 2020;13:11. doi:10.1242/dmm.045898
  • Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of jmjc domain-containing proteins. Nature. 2006;439(7078):811–816. doi:10.1038/nature04433
  • Klose RJ, Kallin EM, Zhang Y. Jmjc-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7(9):715–727. doi:10.1038/nrg1945
  • Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518(7539):413–416. doi:10.1038/nature13981
  • Traube FR, Ozdemir D, Sahin H, et al. Redirected nuclear glutamate dehydrogenase supplies tet3 with alpha-ketoglutarate in neurons. Nat Commun. 2021;12(1):4100. doi:10.1038/s41467-021-24353-9
  • Liu S, He L, Yao K. The antioxidative function of alpha-ketoglutarate and its applications. Biomed Res Int. 2018;2018:3408467. doi:10.1155/2018/3408467
  • An D, Zeng Q, Zhang P, et al. Alpha-ketoglutarate ameliorates pressure overload-induced chronic cardiac dysfunction in mice. Redox Biol. 2021;46:102088. doi:10.1016/j.redox.2021.102088
  • Hariharakrishnan J, Satpute RM, Prasad GB, Bhattacharya R. Oxidative stress mediated cytotoxicity of cyanide in LLC-mk2 cells and its attenuation by alpha-ketoglutarate and n-acetyl cysteine. Toxicol Lett. 2009;185(2):132–141. doi:10.1016/j.toxlet.2008.12.011
  • Zhang JY, Zhou B, Sun RY, et al. The metabolite alpha-kg induces gsdmc-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021;31(9):980–997. doi:10.1038/s41422-021-00506-9
  • Parker SJ, Encarnacion-Rosado J, Hollinshead KER, et al. Spontaneous hydrolysis and spurious metabolic properties of alpha-ketoglutarate esters. Nat Commun. 2021;12(1):4905. doi:10.1038/s41467-021-25228-9
  • Jeppsson A, Ekroth R, Friberg P, et al. Renal effects of alpha-ketoglutarate early after coronary operations. Ann Thorac Surg. 1998;65(3):684–690. doi:10.1016/s0003-4975(97)01337-4
  • Onishi A, Fu Y, Patel R, et al. A role for tubular na(+)/h(+) exchanger nhe3 in the natriuretic effect of the sglt2 inhibitor empagliflozin. Am J Physiol Renal Physiol. 2020;319(4):F712–F728. doi:10.1152/ajprenal.00264.2020
  • Cynober L, Lasnier E, Le Boucher J, Jardel A, Coudray-Lucas C. Effect of ornithine alpha-ketoglutarate on glutamine pools in burn injury: evidence of component interaction. Intensive Care Med. 2007;33(3):538–541. doi:10.1007/s00134-006-0511-0
  • Deen PM, Robben JH. Succinate receptors in the kidney. J Am Soc Nephrol. 2011;22(8):1416–1422. doi:10.1681/ASN.2010050481
  • Wagner BM, Donnarumma F, Wintersteiger R, Windischhofer W, Leis HJ. Simultaneous quantitative determination of alpha-ketoglutaric acid and 5-hydroxymethylfurfural in human plasma by gas chromatography-mass spectrometry. Anal Bioanal Chem. 2010;396(7):2629–2637. doi:10.1007/s00216-010-3479-0
  • Srivastava SP, Koya D, Kanasaki K. MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on emt and endmt. Biomed Res Int. 2013;2013:125469. doi:10.1155/2013/125469
  • Sciacovelli M, Goncalves E, Johnson TI, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537(7621):544–547. doi:10.1038/nature19353