679
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Hypoglycaemic Molecules for the Management of Diabetes Mellitus from Marine Sources

ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, , , , , , , , ORCID Icon, & ORCID Icon show all
Pages 2187-2223 | Received 08 Apr 2023, Accepted 12 Jul 2023, Published online: 25 Jul 2023

References

  • Al-Lawati JA. Diabetes mellitus: a local and global public health emergency! Oman Med J. 2017;32(3):177–179. doi:10.5001/omj.2017.34
  • Barde SR, Sakhare RS, Kanthale SB, Chandak PG, Jamkhande PG. Marine bioactive agents: a short review on new marine anti-diabetic compounds. Asian Pac J Trop Dis. 2015;5:S209–S213. doi:10.1016/S2222-1808(15)60891-X
  • International diabetes federation- facts and figures. 2023. Available from: https://idf.org/about-diabetes/facts-figures/. Accessed February 20, 2023.
  • Goldenberg R, Punthakee Z. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome Canadian Diabetes Association clinical practice guidelines expert committee. Can J Diabetes. 2013;37:S8–S11. doi:10.1016/j.jcjd.2013.01.011
  • Groop L, Pociot F. Genetics of diabetes–are we missing the genes or the disease? Mol Cell Endocrinol. 2014;382(1):726–739. doi:10.1016/j.mce.2013.04.002
  • American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40:S11–S24. doi:10.2337/dc17-S005
  • Liu Y, Gao Z, Guo Q, et al. Anti-diabetic effects of CTB-APSL fusion protein in type 2 diabetic mice. Mar Drugs. 2014;12(3):1512–1529. doi:10.3390/md12031512
  • Reimann M, Bonifacio E, Solimena M, et al. An update on preventive and regenerative therapies in diabetes mellitus. Pharmacol Ther. 2009;121(3):317–331.
  • Joshi SR, Parikh RM, Das AK. Insulin–history, biochemistry, physiology and pharmacology. J Assoc Physicians India. 2007;55:19–25.
  • Newsholme P, Cruzat V, Arfuso F, Keane K. Nutrient regulation of insulin secretion and action. J Endocrinol. 2014;221(3):R105–R120. doi:10.1530/JOE-13-0616
  • Sonksen P, Sonksen J. Insulin: understanding its action in health and disease. Br J Anaesth. 2000;85(1):69–79. doi:10.1093/bja/85.1.69
  • D’Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs. 2012;10:812–833. doi:10.3390/md10040812
  • Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387(10035):2340–2348. doi:10.1016/S0140-6736(16)30507-4
  • Thilagam E, Parimaladevi B, Kumarappan C, Chandra Mandal S. α-Glucosidase and α- amylase inhibitory activity of senna surattensis. J Acupunct Meridian Stud. 2013;6(1):24–30. doi:10.1016/j.jams.2012.10.005
  • Jung M, Park M, Lee H, Kang Y-H, Kang E, Kim S. anti-diabetic agents from medicinal plants. Curr Med Chem. 2006;13(10):1203–1218. doi:10.2174/092986706776360860
  • Ngo LT, Okogun JI, Folk WR. 21st century natural product research and drug development and traditional medicines. Nat Prod Rep. 2013;30(4):584–592. doi:10.1039/c3np20120a
  • Ray SD. Side effects of drugs annual. In: Ray SD, editor. A Worldwide Yearly Survey of New Data in Adverse Drug Reactions. Vol. 39. Amsterdam, Netherlands: Elsevier; 2021:584.
  • Lee S-H, Ko S-C, Kang M-C, Lee DH, Jeon Y-J. Octaphlorethol A, a marine algae product, exhibits anti-diabetic effects in type 2 diabetic mice by activating AMP-activated protein kinase and upregulating the expression of glucose transporter 4. Food Chem Toxicol. 2016;91:58–64. doi:10.1016/j.fct.2016.02.022
  • Manikkam V, Vasiljevic T, Donkor ON, Mathai ML. A review of potential marine-derived hypotensive and anti-obesity peptides. Crit Rev Food Sci Nutr. 2016;56(1):92–112. doi:10.1080/10408398.2012.753866
  • Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules. 2016;21(5):551–567. doi:10.3390/molecules21050551
  • Saleh ASM, Zhang Q, Shen Q. Recent research in antihypertensive activity of food protein-derived hydrolyzates and peptides. Crit Rev Food Sci Nutr. 2016;56(5):760–787. doi:10.1080/10408398.2012.724478
  • Suleria HARHAR, Gobe G, Masci P, Osborne SA. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci Technol. 2016;50:44–55. doi:10.1016/j.tifs.2016.01.019
  • Choochote W, Suklampoo L, Ochaikul D. Evaluation of anti-oxidant capacities of green microalgae. J Appl Phycol. 2014;26(1):43–48. doi:10.1007/s10811-013-0084-6
  • Zhao C, Wu Y, Yang C, Liu B, Huang Y. Hypotensive, hypoglycaemic and hypolipidaemic effects of bioactive compounds from microalgae and marine micro-organisms. Int J Food Sci Technol. 2015;50:1705–1717. doi:10.1111/ijfs.12860
  • Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods. 2011;3:255–266. doi:10.1016/j.jff.2011.07.001
  • Jaspars M, de Pascale D, Andersen JH, Reyes F, Crawford AD, Ianora A. The marine biodiscovery pipeline and ocean medicines of tomorrow. J Mar Biol Assoc UK. 2016;96(1):151–158. doi:10.1017/S0025315415002106
  • Lowenberg B. Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood. 2013;121:26–28. doi:10.1182/blood-2012-07-444851
  • Klotz U. Ziconotide- a novel neuron-specific calcium channel blocker for the intrathecal treatment of severe chronic pain- a short review. Int J Clin Pharmacol Ther. 2006;44:478–483. doi:10.5414/CPP44478
  • Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010;8(10):2619–2638. doi:10.3390/md8102619
  • Imada C. Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek. 2005;87(1):59–63. doi:10.1007/s10482-004-6544-x
  • Kim KY, Nam KA, Kurihara H, Kim SM. Potent alpha-glucosidase inhibitors purified from the red alga grateloupia elliptica. Phytochemistry. 2008;69(16):2820–2825. doi:10.1016/j.phytochem.2008.09.007
  • Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem. 2011;126(3):1006–1012. doi:10.1016/j.foodchem.2010.11.111
  • Sun Z, Chen F. Evaluation of the Green Alga Chlorella pyrenoidosa for management of diabetes. J Food Drug Anal. 2012;20:246–249.
  • Bidon-Chanal A, Fuertes A, Alonso D, et al. Evidence for a new binding mode to GSK-3: allosteric regulation by the marine compound palinurin. Eur J Med Chem. 2013;60:479–489. doi:10.1016/j.ejmech.2012.12.014
  • Harnedy PA, FitzGerald RJ. In vitro assessment of the cardioprotective, anti-diabetic and 805 anti-oxidant potential of Palmaria palmata protein hydrolysates. J Appl Phycol. 2013;25(6):1793–1803. doi:10.1007/s10811-013-0017-4
  • Pandey S, Sree A, Dash SS, Sethi DP, Chowdhury L. Diversity of marine bacteria producing beta-glucosidase inhibitors. Microb Cell Fact. 2013;12:35. doi:10.1186/1475-2859-12-35
  • Krish S, Das A. In vitro bioactivity of marine seaweed, Cladophora rupestris. Int J Pharm Biol Sci. 2014;5:898–908.
  • Suzen S, Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem. 2005;10(15):1329–1352. doi:10.2174/0929867033457377
  • Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006;7(11):1435–1441. doi:10.2174/1389450110607011435
  • Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab. 2009;297(6):E1247–E1259. doi:10.1152/ajpendo.00274.2009
  • Patel AM, Anand IS, Suva MA. Role of protein tyrosine phosphatase-1B inhibitors in type 2 diabetes mellitus. J Pharm Sci Tech. 2014;4:2–6.
  • Sharifuddin Y, Chin Y-X, Lim P-E, Phang S-M. Potential bioactive compounds from seaweed for diabetes management. Mar Drugs. 2015;13(8):5447–5491. doi:10.3390/md13085447
  • Shi D, Guo S, Jiang B, et al. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice. Mar Drugs. 2013;11(2):350–362. doi:10.3390/md11020350
  • Yamazaki H, Nakazawa T, Sumilat DA, et al. Three new unique sesquiterpenes from a marine sponge Euryspongia sp. Bioorg Med Chem Lett. 2013;23(7):2151–2154. doi:10.1016/j.bmcl.2013.01.102
  • Tamrakar AK, Tiwari P, Ahmad R, et al. Antihyperglycaemic activity of Sinularia firma and Sinularia erecta in streptozotocin-induced diabetic rats. Med Chem Res. 2008;17(2):62–73.
  • Tiwari P, Rahuja N, Kumar R, et al. Search for antihyperglycemic activity in few marine flora and fauna. Indian J Sci Technol. 2008;1(5):1–5. doi:10.17485/ijst/2008/v1i5.4
  • Kang C, Jin YB, Lee H, et al. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food Chem Toxicol. 2010;48(2):509–516. doi:10.1016/j.fct.2009.11.004
  • Zhu CF, Peng HB, Liu GQ, Zhang F, Li Y. Beneficial effects of oligopeptides from marine salmon skin in a rat model of type 2 diabetes. Nutrition. 2010;26(10):1014–1020. doi:10.1016/j.nut.2010.01.011
  • Nuno K, Villarruel-Lopez A, Puebla-Perez AM, Romero-Velarde E, Puebla-Mora AG, Ascencio F. Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. J Funct Foods. 2013;5(1):106–115. doi:10.1016/j.jff.2012.08.011
  • Popov AM, Krivoshapko ON. Protective effects of polar lipids and redox-active compounds from marine organisms at modeling of hyperlipidemia and diabetes. J Biomed Sci Eng. 2013;06(05):543–550. doi:10.4236/jbise.2013.65069
  • Nguyen VB, Wang SL. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Mar Drugs. 2017;15(11):350. doi:10.3390/md15110350
  • Nguyen V, Nguyen A, Wang S-L. Utilization of fishery processing by-product squid pens for α-glucosidase inhibitors production by Paenibacillus sp. Mar Drugs. 2017;15(9):274. doi:10.3390/md15090274
  • Nguyen VB, Nguyen TH, Doan CT, et al. Production and bioactivity-guided isolation of anti-oxidants with α-glucosidase inhibitory and anti-NO properties from marine chitinous materials. Molecules. 2018;23(5):1124. doi:10.3390/molecules23051124
  • Krishnan S, Chakraborty K, Joy M. First report of chromenyl derivatives from spineless marine cuttlefish Sepiella inermis: prospective antihyperglycemic agents attenuate serine protease dipeptidyl peptidase-IV. J Food Biochem. 2019;43(5):1–12. doi:10.1111/jfbc.12824
  • Nguyen TH, Kim SM. α-glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicus. J Food Sci. 2015;80(4):H841–H847. doi:10.1111/1750-3841.12810
  • Sun Z, Liu J, Zeng X, et al. Astaxanthin is responsible for antiglycoxidative properties of microalga Chlorella zofingiensis. Food Chem. 2011;126(4):1629–1635. doi:10.1016/j.foodchem.2010.12.043
  • Nguyen TH, Um BH, Kim SM. Two unsaturated fatty acids with potent α-glucosidase inhibitory activity purified from the body wall of sea cucumber (Stichopus japonicus). J Food Sci. 2011;76(9):H208–H214. doi:10.1111/j.1750-3841.2011.02391.x
  • Saether T, Paulsen SM, Tungen JE, et al. Synthesis and biological evaluations of marine oxohexadecenoic acids: pPARα/γ dual agonism and anti-diabetic target gene effects. Eur J Med Chem. 2018;155:736–753. doi:10.1016/j.ejmech.2018.06.034
  • de Munter JSL, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4(8):e261. doi:10.1371/journal.pmed.0040261
  • Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes. Arch Intern Med. 2007;167(9):956.
  • Mann JI, De Leeuw I, Hermansen KDSG, et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr Metab Cardiovasc Dis. 2004;14(6):373–394.
  • Association AD. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin Diabetes. 2019;37(1):11–34.
  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR. Nutritional value of edible seaweeds. Nutr Rev. 2007;65(12):535–543. doi:10.1111/j.1753-4887.2007.tb00278.x
  • Kim MS, Kim JY, Choi WH, Lee SS. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and anti-oxidant enzyme activities in patients with type 2 diabetes 880 mellitus. Nutr Res Pract. 2008;2(2):62. doi:10.4162/nrp.2008.2.2.62
  • Pi-Sunyer X. Do glycemic index, glycemic load, and fiber play a role in insulin sensitivity, disposition index, and type 2 diabetes? Diabetes Care. 2005;28(12):2978–2979. doi:10.2337/diacare.28.12.2978
  • Dumelod BD, Ramirez RP, Tiangson CL, Barrios EB, Panlasigui LN. Carbohydrate availability of arroz caldo with lambda-carrageenan. Int J Food Sci Nutr. 1999;50(4):283–289.
  • Goni I, Valdivieso L, Garcia-Alonso A. Nori seaweed consumption modifies glycemic re- sponse in healthy volunteers. Nutr Res. 2000;20(10):1367–1375. doi:10.1016/S0271-5317(00)80018-4
  • Kitano Y, Murazumi K, Duan J, et al. Effect of dietary porphyran from the red alga, Porphyra yezoensis, on glucose metabolism in diabetic KK-Ay mice. J Nutr Sci Vitaminol (Tokyo). 2012;58(1):14–19. doi:10.3177/jnsv.58.14
  • Vaugelade P, Hoebler C, Bernard F, et al. Non-starch polysaccharides extracted from seaweed can modulate intestinal absorption of glucose and insulin response in the pig. Reprod Nutr Dev. 2000;40(1):33–47. doi:10.1051/rnd:2000118
  • Paxman JR, Richardson JC, Dettmar PW, Corfe BM. Daily ingestion of alginate reduces energy intake in free-living subjects. Appetite. 2008;51(3):713–719. doi:10.1016/j.appet.2008.06.013
  • Wolf BW, Lai CS, Kipnes MS, et al. Glycemic and insulinemic responses of nondiabetic healthy adult subjects to an experimental acid-induced viscosity complex incorporated into a glucose beverage. Nutrition. 2002;18(7–8):621–626. doi:10.1016/S0899-9007(02)00750-5
  • Williams JA, Lai CS, Corwin H, et al. Inclusion of guar gum and alginate into a crispy bar improves postprandial glycemia in humans. J Nutr. 2004;134(4):886–889. doi:10.1093/jn/134.4.886
  • Balasubramaniam V, Mustar S, Mustafa Khalid N, et al. Inhibitory activities of three Malaysian edible seaweeds on lipase and α-amylase. J Appl Phycol. 2013;25(5):1405–1412.
  • Barbagallo M, Dominguez LJ, Galioto A, et al. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med. 2003;24(1–3):39–52. doi:10.1016/S0098-2997(02)00090-0
  • Ramadass S, Basu S, Srinivasan AR. SERUM magnesium levels as an indicator of status of diabetes mellitus type 2. Diabetes Metab Syndr. 2015;9(1):42–45. doi:10.1016/j.dsx.2014.04.024
  • Liu Y, Zhou Q, Zhao Y, et al. Enrichment, distribution of vanadium-containing protein in vanadium-enriched sea cucumber Apostichopus japonicus and the ameliorative effect on insulin resistance. Biol Trace Elem Res. 2016;171(1):167–175. doi:10.1007/s12011-015-0517-y
  • Setyaningsih I, Bintang M, Madina N. Potentially antihyperglycemic from biomass and phycocyanin of spirulina fusiformis voronikhin by in vivo test. Procedia Chem. 2015;14:211–215. doi:10.1016/j.proche.2015.03.030
  • Gershwin ME, Belay A. Spirulina in Human Nutrition and Health. CRC press; 2007:328.
  • Yang CF, Lai SS, Chen YH, et al. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signaling pathways and regulation of gut microbiota. Food Chem Toxicol. 2019;131:110562. doi:10.1016/j.fct.2019.110562
  • Kumar SG, Rahman MA, Lee SH, Hwang HS, Kim HA, Yun JW. Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics. 2009;9(8):2149–2162. doi:10.1002/pmic.200800571
  • Oh JH, Kim J, Lee Y. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutr Res Pract. 2016;10(1):42–48. doi:10.4162/nrp.2016.10.1.42
  • Zhu CF, Li GZ, Peng H-B, Zhang F, Chen Y, Li Y. Effect of marine collagen peptides on markers of metabolic nuclear receptors in type 2 diabetic patients with/without hypertension. Biomed Environ Sci. 2010;23(2):113–120. doi:10.1016/S0895-3988(10)60040-2
  • Nasri R, Abdelhedi O, Jemil I, et al. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats. Chem Biol Interact. 2015;242:71–80. doi:10.1016/j.cbi.2015.08.003
  • Xia EQ, Zhu SS, He MJ, Luo F, Fu CZ, Zou TB. Marine peptides as potential agents for the management of type 2 diabetes mellitus-a prospect. Mar Drugs. 2017;15(4):88. doi:10.3390/md15040088
  • Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–1079. doi:10.1016/j.metabol.2015.11.006
  • Hatanaka T, Inoue Y, Arima J, et al. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem. 2012;134(2):797–802. doi:10.1016/j.foodchem.2012.02.183
  • Velarde-Salcedo AJ, Barrera-Pacheco A, Lara-González S, et al. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem. 2013;136(2):758–764. doi:10.1016/j.foodchem.2012.08.032
  • Cheung RCF, Ng TB, Wong JH. Marine peptides: bioactivities and applications. Mar Drugs. 2015;13(7):4006–4043. doi:10.3390/md13074006
  • Suetsuna K, Saito M; Shirako Co Ltd. Enzyme-decomposed materials of laver and uses thereof. U.S. Patent 6217879; 2001.
  • Ben Abdallah Kolsi R, Ben Gara A, Jardak N, et al. Inhibitory effects of Cymodocea nodosa sulphated polysaccharide on α-amylase activity, liver-kidney toxicities and lipid profile disorders in diabetic rats. Arch Physiol Biochem. 2015;121(5):218–227. doi:10.3109/13813455.2015.1107588
  • Li F, Zhang Y, Zhong Z. Antihyperglycemic effect of ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. Int J Mol Sci. 2011;12(9):6135–6145. doi:10.3390/ijms12096135
  • Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym. 2011;84:14–21.
  • Huang L, Wen K, Gao X, Liu Y. Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats. Pharm Biol. 2010;48(4):422–426. doi:10.3109/13880200903150435
  • Suganya AM, Sanjivkumar M, Chandran MN, Palavesam A, Immanuel G. Pharmacological importance of sulphated polysaccharide carrageenan from red seaweed Kappaphycus alvarezii in comparison with commercial carrageenan. Biomed Pharmacother. 2016;84:1300–1312. doi:10.1016/j.biopha.2016.10.067
  • Baluchnejadmojarad T, Roghani M, Homayounfar H, Hosseini M. Beneficial effect of aqueous garlic extract on the vascular reactivity of streptozotocin-diabetic rats. Ethnopharmacol. 2003;85(1):139–144. doi:10.1016/S0378-8741(02)00372-0
  • Kim KT, Rioux LE, Turgeon SL. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry. 2014;98:27–33. doi:10.1016/j.phytochem.2013.12.003
  • Kumar TV, Lakshmanasenthil S, Geetharamani D, Marudhupandi T, Suja G, Suganya P. Fucoidan–a α-d-glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. Int J Biol Macromol. 2015;72:1044–1047. doi:10.1016/j.ijbiomac.2014.10.013
  • Yuan C, Liu P, Han X, Cui Q. Hypoglycemic effects of glycosaminoglycan from Urechis unicinctus in diabetic mice. J Med Food. 2015;18(2):190–194. doi:10.1089/jmf.2013.3139
  • Wang C, Chen Z, Pan Y, Gao X, Chen H. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice. Food Chem Toxicol. 2017;108:498–509. doi:10.1016/j.fct.2017.01.007
  • Mackowiak P, Krejpcio Z, Sassek M, et al. Evaluation of insulin binding and signaling activity of newly synthesized chromium (III) complexes in vitro. Mol Med Rep. 2010;3(2):347–353. doi:10.3892/mmr_00000264
  • Hua Y, Clark S, Ren J, Sreejayan N. Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem. 2012;23:313–319. doi:10.1016/j.jnutbio.2011.11.001
  • Cui JF, Ye H, Zhu YJ, Li YP, Wang JF, Wang P. Characterization and hypoglycemic activity of a rhamnan-type sulfated polysaccharide derivative. Mar Drugs. 2019;17(1):1–14. doi:10.3390/md17010021
  • Dabhi B, Mistry KN. Oxidative stress and its association with TNF-α-308 G/C and IL-1α-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy. Gene. 2015;562(2):197–202. doi:10.1016/j.gene.2015.02.069
  • Ye H, Shen Z, Cui J, et al. Hypoglycemic activity and mechanism of the sulfated rhamnose polysaccharides chromium(III) complex in type 2 diabetic mice. Bioorg Chem. 2019;88:102942. doi:10.1016/j.bioorg.2019.102942
  • Yang XD, Liu CG, Tian YJ, Gao DH, Li WS, Ma HL. Inhibitory effect of fucoidan on hypoglycemia in diabetes mellitus anim. Int J Clin Exp Med. 2017;10(5):8529–8534.
  • Wang Y, Wang J, Zhao Y, Hu S, Shi D, Xue C. Fucoidan from sea cucumber Cucumaria frondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4. J Biosci Bioeng. 2016;121(1):36–42. doi:10.1016/j.jbiosc.2015.05.012
  • Kim KY, Nguyen TH, Kurihara H, Kim SM. α-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci. 2010;75(5):H145–H150. doi:10.1111/j.1750-3841.2010.01629.x
  • Liu M, Zhang W, Wei J, Lin X. Synthesis and α-glucosidase inhibitory mechanisms of bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a potential marine bromophenol α-glucosidase inhibitor. Mar Drugs. 2011;9(9):1554–1565. doi:10.3390/md9091554
  • Kurihara H, Mitani T, Kawabata J, Takahashi K. Inhibitory potencies of bromophenols from rhodomelaceae algae against alpha-glucosidase activity. Fish Sci. 1999;65(2):300–303. doi:10.2331/fishsci.65.300
  • Xu F, Wang F, Wang Z, Lv W, Wang W, Wang Y. Glucose uptake activities of Bis (2,3- Dibromo-4,5-Dihydroxybenzyl) ether, a novel marine natural product from red alga Odonthalia corymbifera with protein tyrosine phosphatase-1B inhibition, in vitro and in vivo. PLoS One. 2016;11(1):e0147748. doi:10.1371/journal.pone.0147748
  • Liu X, Li X, Gao L, et al. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula. Chin J Oceanol Limnol. 2011;29(3):686–690. doi:10.1007/s00343-011-0136-1
  • Shi D, Xu F, He J, Li J, Fan X, Han L. Inhibition of bromophenols against PTP1B and anti-hyperglycemic effect of Rhodomela confervoides extract in diabetic rats. Sci Bull. 2008;53(16):2476–2479. doi:10.1007/s11434-008-0353-y
  • Shi D-Y, Xu F, Li J, Guo S-J, Su H, Han L-J. PTP1B inhibitory activities of bromophenol derivatives from algae. Zhongguo Zhong Yao Za Zhi. 2008;33(19):2238–2240.
  • Qin J, Su H, Zhang Y, et al. Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg Med Chem Lett. 2010;20(23):7152–7154. doi:10.1016/j.bmcl.2010.08.144
  • Yamazaki H, Sumilat DA, Kanno SI, et al. A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivatives inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment. J Nat Med. 2013;67(4):730–735. doi:10.1007/s11418-012-0735-y
  • Shi D, Li J, Jiang B, Guo S, Su H, Wang T. Bromophenols as inhibitors of protein tyrosine phosphatase 1B with anti-diabetic properties. Bioorg Med Chem Lett. 2012;22(8):2827–2832. doi:10.1016/j.bmcl.2012.02.074
  • Paudel P, Seong SH, Park HJ, Jung HA, Choi JS. Anti-diabetic activity of 2,3,6-tribromo- 4,5-dihydroxybenzyl derivatives from Symphyocladia latiuscula through PTP1B downregulation and α-glucosidase inhibition. Mar Drugs. 2019;17(3):166–185. doi:10.3390/md17030166
  • Ananthan G, Prabhu AS. New lead molecules from ascidian phallusia nigra (savigny, 1816) for type-2 diabetes mellitus targeting aldose reductase: an in silico approach. Univ J Appl Sci. 2014;2(4):73–76. doi:10.13189/ujas.2014.020401
  • Wang C, Guo L, Hao J, Wang L, Zhu W. α-glucosidase inhibitors from the marine-derived fungus Aspergillus flavipes HN4-13. J Nat Prod. 2016;79(11):2977–2981. doi:10.1021/acs.jnatprod.6b00766
  • Zhang LH, Feng BM, Zhao YQ, et al. Polyketide butenolide, diphenyl ether, and benzophenone derivatives from the fungus Aspergillus flavipes PJ03-11. Bioorg Med Chem Lett. 2016;26(2):346–350. doi:10.1016/j.bmcl.2015.12.009
  • Hosokawa M, Okada T, Mikami N, Konishi I, Miyashita K. Bio-functions of marine carotenoids. Food Sci Biotechnol. 2009;18:1–11.
  • Chuyen HV, Eun JB. Marine carotenoids: bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr. 2017;57(12):2600–2610. doi:10.1080/10408398.2015.1063477
  • Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem. 2007;55(19):7701–7706. doi:10.1021/jf071569n
  • Woo MN, Jeon SM, Kim HJ, et al. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact. 2010;186(3):316–322. doi:10.1016/j.cbi.2010.05.006
  • Jung HA, Islam M, Lee CM, et al. Promising anti-diabetic potential of fucoxanthin isolated from the edible brown algae Eisenia bicyclis and Undaria pinnatifida. Fish Sci. 2012;78(6):1321–1329. doi:10.1007/s12562-012-0552-y
  • Rigalleau V, Cougnard-Gregoire A, Nov S, et al. Association of advanced glycation end products and chronic kidney disease with macroangiopathy in type 2 diabetes. J Diabetes Complications. 2015;29(2):270–274.
  • Lauritano C, Ianora A. Marine organisms with anti-diabetes properties. Mar Drugs. 2016;14(12):220. doi:10.3390/md14120220
  • Sun Z, Liu J, Zeng X, et al. Protective actions of microalgae against endogenous and exogenous advanced glycation end products (AGEs) in human retinal pigment epithelial cells. Food Funct. 2011;2(5):251–258.
  • Arunkumar E, Bhuvaneswari S, Anuradha CV. An intervention study in obese mice with astaxanthin, a marine carotenoid–effects on insulin signaling and pro-inflammatory cytokines. Food Funct. 2012;3(2):120–126. doi:10.1039/C1FO10161G
  • Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep. 2002;7(5):290–2933. doi:10.1179/135100002125000811
  • Sun T, Wang Q, Yu Z, et al. Hyrtiosal, a PTP1B inhibitor from the marine sponge Hyrtios erectus, shows extensive cellular effects on PI3K/AKT activation, glucose transport, and TGFβ/Smad2 signaling. ChemBioChem. 2007;8(2):187–193. doi:10.1002/cbic.200600349
  • Zhou R, Lin ZH, Jiang CS, et al. Marine natural product des-O-methyllasiodiplodin effectively lowers the blood glucose level in db/db mice via ameliorating inflammation. Acta Pharmacol Sin. 2013;34(10):1325–1336. doi:10.1038/aps.2013.47
  • López-Acosta JF, Moreno-Amador JL, Jiménez-Palomares M, et al. Epoxypukalide induces proliferation and protects against cytokine-mediated apoptosis in primary cultures of pancreatic β-cells. PLoS One. 2013;8(1):e52862. doi:10.1371/journal.pone.0052862
  • Ali Y, Kim DH, Seong SH, Kim HR, Jung HA, Choi JS. α-Glucosidase and protein tyrosine phosphatase 1b inhibitory activity of plastoquinones from marine brown alga Sargassum serratifolium. Mar Drugs. 2017;15(12):368. doi:10.3390/md15120368
  • Adeghate E. Medicinal chemistry and actions of dual and pan PPAR modulators. Open Med Chem J. 2011;5(1):93–98. doi:10.2174/1874104501105010093
  • Ezzat SM, Bishbishy MHE, Habtemariam S, et al. Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: a special emphasis on PTP1B inhibitors. Molecules. 2018;23(12):3334. doi:10.3390/molecules23123334
  • Kim S-N, Choi HY, Lee W, Park GM, Shin WS, Kim YK. Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through PPARalpha/gamma activation in 3T3-L1 cells. FEBS Lett. 2008;582(23–24):3465–3472. doi:10.1016/j.febslet.2008.09.011
  • Raju K, Balaraman R. anti-diabetic mechanisms of saponins of Momordica cymbalaria. Pharmacogn Mag. 2008;4(15):197–206.
  • El Barky AR, Hussein SA, Alm-Eldeen AA, Hafez YA, Mohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother. 2016;84:1472–1487. doi:10.1016/j.biopha.2016.10.002
  • Metwally NS, Mohamed AM, El Sharabasy FS. Chemical constituents of the Egyptian plant Anabasis articulata (Forssk) moq and its anti-diabetic effects on rats with streptozotocin induced diabetic hepatopathy. J Appl Pharm Sci. 2012;2(4):54–65.
  • Elekofehinti OO, Kamdem JP, Kade IJ, Rocha JBT, Adanlawo IG. Hypoglycemic, antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam. fruits in alloxan-induced diabetic rats. S Afr J Bot. 2013;88:56–61. doi:10.1016/j.sajb.2013.04.010
  • Priya SP, Gladys JR. Validation of anti-diabetic potential of Avirai kudineer a Siddha herbal formulation-a review. IOSR J Dent Med Sci. 2015;14(7):7–15.
  • Nagmoti DM, Juvekar AR. In vitro inhibitory effects of Pithecellobium dulce (Roxb.) Benth. seeds on intestinal α-glucosidase and pancreatic α-amylase. J Biochem Technol. 2013;4(3):616–621.
  • Wu CF, Bi XL, Yang JY, et al. 1095 differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int Immunopharmacol. 2007;7(3):313–320. doi:10.1016/j.intimp.2006.04.021
  • Elekofehinti OO, Adanlawo IG, Saliu JA, Sodehinde SA. Saponins from Solanum anguivi fruits exhibit hypolipidemic potential in Rattus norvegicus. Der Pharm Lett. 2012;4(3):811–814.
  • Payghami N, Jamili S, Rustaiyan A, Saeidnia S, Nikan M, Gohari A. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens. Pharmacognosy Res. 2015;7(4):314. doi:10.4103/0974-8490.167893
  • Lee YS, Shin KH, Kim B-K, Lee S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res. 2004;27(11):1120. doi:10.1007/BF02975115
  • Jung HA, Islam MN, Lee CM, et al. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Chem Biol Interact. 2013;206(1):55–62.
  • Lee S-H, Jeon Y-J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia. 2013;86:129–136. doi:10.1016/j.fitote.2013.02.013
  • Roy M-C, Anguenot R, Fillion C, Beaulieu M, Bérubé J, Richard D. Effect of a commercially-available algal phlorotannins extract on digestive enzymes and carbohydrate absorption in vivo. Food Res Int. 2011;44(9):3026–3029. doi:10.1016/j.foodres.2011.07.023
  • Moon HE, Islam MN, Ahn BR, et al. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotechnol Biochem. 2011;75(8):1472–1480. doi:10.1271/bbb.110137
  • Eom SH, Lee SH, Yoon NY, et al. α-Glucosidase-and α-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric. 2012;92(10):2084–2090.
  • Iwai K. anti-diabetic and anti-oxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Ay mice. Plant Foods Hum Nutr. 2008;63(4):163–169. doi:10.1007/s11130-008-0098-4
  • Kellogg J, Grace M, Lila M. Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity. Mar Drugs. 2014;12(10):5277–5794. doi:10.3390/md12105277
  • Rengasamy KRR, Aderogba MA, Amoo SO, Stirk WA, Van Staden J. Potential antiradical and alpha-glucosidase inhibitors from Ecklonia maxima (Osbeck) papenfuss. Food Chem. 2013;141(2):1412–1415. doi:10.1016/j.foodchem.2013.04.019
  • Jung HA, Yoon NY, Woo MH, Choi JS. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish Sci. 2008;74(6):1363–1365.
  • Lee SH, Choi JI, Heo SJ, et al. Diphlorethohydroxycarmalol isolated from Pae (Ishige okamurae) protects high glucose-induced damage in RINm5F pancreatic β cells via its anti-oxidant effects. Food Sci Biotechnol. 2012;21(1):239–246. doi:10.1007/s10068-012-0031-3
  • Heo SJ, Hwang JY, Choi JI, et al. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against high glucose-induced-oxidative stress in human umbilical vein endothelial cells. Food Chem Toxicol. 2010;48(6):1448–1454. doi:10.1016/j.fct.2010.02.025
  • Heo S-J, Hwang J-Y, Choi J-I, Han J-S, Kim H-J, Jeon Y-J. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown alga, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol. 2009;615(1–3):252–256. doi:10.1016/j.ejphar.2009.05.017
  • Fernando K, Yang H-W, Jiang Y, Jeon Y-J, Ryu B. Diphlorethohydroxycarmalol isolated from Ishige okamurae represses high glucose-induced angiogenesis in vitro and in vivo. Mar Drugs. 2018;16(10):375. doi:10.3390/md16100375
  • Lee S-H, Kang S-M, Ko S-C, Lee D-H, Jeon Y-J. Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells. Biochem Biophys Res Commun. 2012;420(3):576–581. doi:10.1016/j.bbrc.2012.03.036
  • Lee S-HS-H, Kang S-MS-M, Ko S-CS-C, et al. Octaphlorethol a: a potent α-glucosidase inhibitor isolated from Ishige foliacea shows an anti-hyperglycemic effect in mice with streptozotocin-induced diabetes. Food Funct. 2014;5(10):2602–2608. doi:10.1039/C4FO00420E
  • Lee SH, Kang N, Kim EA, et al. Antidiabetogenic and antioxidative effects of octaphlorethol A isolated from the brown algae Ishige foliacea in streptozotocin-induced diabetic mice. Food Sci Biotechnol. 2014;23(4):1261–1266. doi:10.1007/s10068-014-0173-6
  • Okada Y, Ishimaru A, Suzuki R, Okuyama T. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J Nat Prod. 2004;67(1):103–105. doi:10.1021/np030323j
  • Lee SH, KimKaradeniz MMF, Kim MM, Kim SK, Kim S-K. α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric. 2009;89(9):1552–1558. doi:10.1002/jsfa.3623
  • Shakambari G, Ashokkumar B, Varalakshmi P. Phlorotannins from brown algae: inhibition of advanced glycation end products formation in high glucose induced Caenorhabditis elegans. Indian J Exp Biol. 2015;53(6):371–379.
  • Kawamura-Konishi Y, Watanabe N, Saito M, et al. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J Agric Food Chem. 2012;60(22):5565–5570. doi:10.1021/jf300165j
  • Ryu B, Jiang Y, Kim HS, et al. Ishophloroglucin A, a novel phlorotannin for standardizing the anti-α-glucosidase activity of Ishige okamurae. Mar Drugs. 2018;16(11):436. doi:10.3390/md16110436
  • Lee SH, Park MH, Heo SJ, et al. Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol. 2010;48(10):2633–2637. doi:10.1016/j.fct.2010.06.032
  • Lee SH, Min KH, Han JS, et al. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ- db/db mice, a model of type 2 diabetes mellitus. Food Chem Toxicol. 2012;50(3–4):575–582. doi:10.1016/j.fct.2011.12.032
  • Lee S-H, Jeon Y-J. Efficacy and safety of a dieckol-rich extract (AG-dieckol) of brown algae, Ecklonia cava, in pre-diabetic individuals: a double-blind, randomized, placebo-controlled clinical trial. Food Funct. 2015;6(3):853–858. doi:10.1039/C4FO00940A
  • Kang MC, Wijesinghe WAJP, Lee SH, et al. Dieckol isolated from brown seaweed Ecklonia cava attenuates type diabetes in db/db mouse model. Food Chem Toxicol. 2013;53:294–298. doi:10.1016/j.fct.2012.12.012
  • Lee SH, Park MH, Kang SM, et al. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Biosci Biotechnol Biochem. 2012;76(8):1445–1451. doi:10.1271/bbb.120096
  • Lee S-H, Han J-S, Heo S-J, Hwang J-Y, Jeon Y-J. Protective effects of dieckol isolated from Ecklonia cava against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Toxicol Vitr. 2010;24(2):375–381. doi:10.1016/j.tiv.2009.11.002
  • Jeon HJ, Yoon KY, Koh EJ, et al. Seapolynol and dieckol improve insulin sensitivity through the regulation of the PI3K pathway in C57BL/KsJ-db/db mice. J Food Nutr Res. 2015;3(10):648–652. doi:10.12691/jfnr-3-10-5
  • Kim EA, Lee SH, Lee JH, et al. A marine algal polyphenol, dieckol, attenuates blood glucose levels by Akt pathway in alloxan induced hyperglycemia zebrafish model. RSC Adv. 2016;6(82):78570–78575. doi:10.1039/C6RA12724J
  • Park MH, Heo SJ, Park PJ, et al. 6, 6′-bieckol isolated from Ecklonia cava protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced human umbilical vein endothelial cells. Appl Biochem Biotechnol. 2014;174(2):632–643. doi:10.1007/s12010-014-1099-4
  • Lee H-A, Lee J-H, Han J-S. A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Pharm Biol. 2017;55(1):1149–1154. doi:10.1080/13880209.2017.1291693
  • You H-N, Lee H-A, Park M-H, Lee J-H, Han J-S. Phlorofucofuroeckol A isolated from Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol. 2015;752:92–96. doi:10.1016/j.ejphar.2015.02.003
  • Li Y, Zhang Y, Shen X, Guo Y-W. A novel sesquiterpene quinone from Hainan sponge Dysidea villosa. Bioorg Med Chem Lett. 2009;19(2):390–392. doi:10.1016/j.bmcl.2008.11.068
  • Zhang Y, Li Y, Guo Y, Jiang H, Shen X. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases. Acta Pharmacol Sin. 2009;30(3):333–345. doi:10.1038/aps.2009.5
  • Jiao WH, Huang XJ, Yang JS, et al. Dysidavarones A–D, new sesquiterpene quinones from the marine sponge Dysidea avara. Org Lett. 2012;14(1):202–205. doi:10.1021/ol202994c
  • Liang L-F, Gao L-X, Li J, Taglialatela-Scafati O, Guo Y-W. Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors. Bioorg Med Chem. 2013;21(17):5076–5080. doi:10.1016/j.bmc.2013.06.043
  • Liang LF, Kurtán T, Mándi A, et al. Sarsolenane and capnosane diterpenes from the Hainan soft coral Sarcophyton trocheliophorum Marenzeller as PTP1B inhibitors. European J Org Chem. 2013;2014(9):1841–1847. doi:10.1002/ejoc.201301683
  • Fuentes NL, Sagua H, Morales G, et al. Experimental antihyperglycemic effect of diterpenoids of llareta azorella compacta (Umbelliferae) Phil in rats. Phytother Res. 2005;19(8):713–716. doi:10.1002/ptr.1740
  • Piao SJ, Jiao WH, Yang F, et al. New hippolide derivatives with protein 1B inhibitory activity from the marine sponge Hippospongia lachne. Mar Drugs. 2014;12(7):4096–4109. doi:10.3390/md12074096
  • Seo C, Han Yim J, Kum Lee H, Oh H. PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica. Mycology. 2011;2(1):18–23. doi:10.1080/21501203.2011.554906
  • Xue D-QL, Mao L, Yu X-Q, Guo Y-W. Isomalabaricane triterpenes with potent protein- tyrosine phosphatase 1B (PTP1B) inhibition from the Hainan sponge Stelletta sp. Biochem Syst Ecol. 2013;49:101–106. doi:10.1016/j.bse.2013.03.001
  • Fouad M, Edrada RA, Ebel R, et al. Cytotoxic isomalabaricane triterpenes from the Marine Sponge Rhabdastrella globostellata. J Nat Prod. 2006;69(2):211–218. doi:10.1021/np050346t
  • Sohn JH, Lee YR, Lee DS, Kim YC, Oh H. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. and Eurotium sp. J Microbiol Biotechnol. 2013;23(9):1206–1211. doi:10.4014/jmb.1303.03078
  • Seo C, Sohn JH, Oh H, Kim BY, Ahn JS. Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060. Bioorg Med Chem Lett. 2009;19(21):6095–6097. doi:10.1016/j.bmcl.2009.09.025
  • Debbab A, Aly AH, Lin WH, Proksch P. Bioactive compounds from marine bacteria and fungi: minireview. Microb Biotechnol. 2010;3(5):544–563. doi:10.1111/j.1751-7915.2010.00179.x
  • Mayer C, Côme M, Ulmann L, et al. The potential of the Marine Microalga diacronema lutheri in the prevention of obesity and metabolic syndrome in high-fat-fed wistar rats. Molecules. 2022;27:4246. doi:10.3390/molecules27134246
  • Unnikrishnan PS, Animish A, Madhumitha G, Suthindhiran K, Jayasri MA. Bioactivity guided study for the isolation and identification of antidiabetic compounds from edible seaweed—ulva reticulata. Molecules. 2022;27(24):8827. doi:10.3390/molecules27248827
  • Lee DS, Jang JH, Ko W, et al. PTP1B inhibitory and anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungus Penicillium sp. JF-55. Mar Drugs. 2013;11(4):1409–1426. doi:10.3390/md11041409