894
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Current Perspectives: Obesity and Neurodegeneration - Links and Risks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 111-129 | Received 01 Aug 2023, Accepted 21 Dec 2023, Published online: 02 Jan 2024

References

  • Garnett SP, Baur LA, Jones AM, Hardy LL. Trends in the prevalence of morbid and severe obesity in Australian children aged 7-15 years, 1985–2012. PLoS One. 2016;11:e0154879. doi:10.1371/journal.pone.0154879
  • Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the Gut microbiota. Nutrients. 2021;13:2795.
  • Armstrong DB, Dublin LI, Wheatley GM, Marks HH. Obesity and its relation to health and disease. J Am Med Assoc. 1951;147:1007–1014. doi:10.1001/jama.1951.03670280009003
  • WHO. Facts about overweight and obesity [online]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=Of%20these%20over%20650%20million,overweight%20or%20obese%20in%202020. Accessed December 23, 2023.
  • Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997;27:325–351. doi:10.1023/A:1025635913927
  • Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. doi:10.1038/nature14177
  • Anekwe CV, Jarrell AR, Townsend MJ, Gaudier GI, Hiserodt JM, Stanford FC. Socioeconomics of Obesity. Curr Obes Rep. 2020;9:272–279. doi:10.1007/s13679-020-00398-7
  • Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33:673–689. doi:10.1007/s40273-014-0243-x
  • Kwarteng JL, Schulz AJ, Mentz GB, Israel BA, Perkins DW. Independent effects of neighborhood poverty and psychosocial stress on obesity over time. J Urban Health. 2017;94:791–802. doi:10.1007/s11524-017-0193-7
  • Donnelly JE, Honas JJ, Smith BK, et al. Aerobic exercise alone results in clinically significant weight loss for men and women: midwest exercise trial 2. Obesity (Silver Spring). 2013;21:E219–228. doi:10.1002/oby.20145
  • Ross R, Dagnone D, Jones PJ, et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med. 2000;133:92–103. doi:10.7326/0003-4819-133-2-200007180-00008
  • Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Blair SN, Church TS. Effects of clinically significant weight loss with exercise training on insulin resistance and cardiometabolic adaptations. Obesity (Silver Spring). 2016;24:812–819. doi:10.1002/oby.21404
  • Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–471. doi:10.1249/MSS.0b013e3181949333
  • Flechtner-Mors M, Ditschuneit HH, Johnson TD, Suchard MA, Adler G. Metabolic and weight loss effects of long-term dietary intervention in obese patients: four-year results. Obes Res. 2000;8:399–402. doi:10.1038/oby.2000.48
  • Foster-Schubert KE, Alfano CM, Duggan CR, et al. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity (Silver Spring). 2012;20:1628–1638. doi:10.1038/oby.2011.76
  • Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P; Behavioural Weight Management Review G. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J Acad Nutr Diet. 2014;114:1557–1568. doi:10.1016/j.jand.2014.07.005
  • Messier SP, Mihalko SL, Legault C, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA. 2013;310:1263–1273. doi:10.1001/jama.2013.277669
  • Capers PL, Fobian AD, Kaiser KA, Borah R, Allison DB. A systematic review and meta-analysis of randomized controlled trials of the impact of sleep duration on adiposity and components of energy balance. Obes Rev. 2015;16:771–782. doi:10.1111/obr.12296
  • Sperry SD, Scully ID, Gramzow RH, Jorgensen RS. Sleep duration and waist circumference in adults: a meta-analysis. Sleep. 2015;38:1269–1276. doi:10.5665/sleep.4906
  • Wu Y, Zhai L, Zhang D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med. 2014;15:1456–1462. doi:10.1016/j.sleep.2014.07.018
  • Ahern T, O’Malley E, Dunlevy C, et al. Sleep duration and physical function in people with severe obesity: a prospective cross-sectional study. Ir J Med Sci. 2020;189:517–523. doi:10.1007/s11845-019-02110-8
  • Jike M, Itani O, Watanabe N, Buysse DJ, Kaneita Y. Long sleep duration and health outcomes: a systematic review, meta-analysis and meta-regression. Sleep Med Rev. 2018;39:25–36. doi:10.1016/j.smrv.2017.06.011
  • Messerli FH, Ventura HO, Reisin E, et al. Borderline hypertension and obesity: two prehypertensive states with elevated cardiac output. Circulation. 1982;66:55–60. doi:10.1161/01.CIR.66.1.55
  • Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321:225–236. doi:10.1097/00000441-200104000-00003
  • Lavie CJ, Milani RV. Obesity and cardiovascular disease: the Hippocrates paradox? J Am Coll Cardiol. 2003;42:677–679. doi:10.1016/S0735-1097(03)00784-8
  • Park YM, Sui X, Liu J, et al. The effect of cardiorespiratory fitness on age-related lipids and lipoproteins. J Am Coll Cardiol. 2015;65:2091–2100. doi:10.1016/j.jacc.2015.03.517
  • Parto P, Lavie CJ, Arena R, Bond S, Popovic D, Ventura HO. Body habitus in heart failure: understanding the mechanisms and clinical significance of the obesity paradox. Future Cardiol. 2016;12:639–653. doi:10.2217/fca-2016-0029
  • Dart AM, Chin-Dusting JP. Lipids and the endothelium. Cardiovasc Res. 1999;43:308–322. doi:10.1016/S0008-6363(99)00150-9
  • Chiu JJ, Usami S, Chien S. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann Med. 2009;41:19–28. doi:10.1080/07853890802186921
  • Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104:503–516. doi:10.1016/S0092-8674(01)00238-0
  • Silverman JF, O’Brien KF, Long S, et al. Liver pathology in morbidly obese patients with and without diabetes. Am J Gastroenterol. 1990;85:1349–1355.
  • Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140:124–131. doi:10.1053/j.gastro.2010.09.038
  • Zhu Y, Sidell MA, Arterburn D, et al. Racial/Ethnic Disparities in the Prevalence of Diabetes and Prediabetes by BMI: patient Outcomes Research To Advance Learning (PORTAL) Multisite Cohort of Adults in the U.S. Diabetes Care. 2019;42:2211–2219. doi:10.2337/dc19-0532
  • Rachdaoui N. Insulin: the friend and the Foe in the development of type 2 diabetes mellitus. Int J Mol Sci. 2020;21. doi:10.3390/ijms22010021
  • Verdile G, Keane KN, Cruzat VF, et al. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators Inflamm. 2015;2015:105828. doi:10.1155/2015/105828
  • Morris JK, Burns JM. Insulin: an emerging treatment for Alzheimer’s disease dementia? Curr Neurol Neurosci Rep. 2012;12:520–527. doi:10.1007/s11910-012-0297-0
  • Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19:758–766. doi:10.1016/S1474-4422(20)30231-3
  • Heydenreich J, Kayser B, Schutz Y, Melzer K. Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: a systematic review. Sports Med Open. 2017;3:8. doi:10.1186/s40798-017-0076-1
  • Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37. doi:10.3389/fendo.2013.00037
  • Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98:2133–2223. doi:10.1152/physrev.00063.2017
  • Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206–218. doi:10.1016/j.physbeh.2007.10.010
  • Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48. doi:10.1161/CIRCULATIONAHA.106.675355
  • Taksali SE, Caprio S, Dziura J, et al. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes. 2008;57:367–371. doi:10.2337/db07-0932
  • Liu J, Fox CS, Hickson DA, et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J Clin Endocrinol Metab. 2010;95:5419–5426. doi:10.1210/jc.2010-1378
  • Rosenwald M, Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte. 2014;3:4–9. doi:10.4161/adip.26232
  • Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–39.
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–1508. doi:10.1056/NEJMoa0808718
  • Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10:48–65. doi:10.1080/21623945.2020.1870060
  • Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989;83:1168–1173. doi:10.1172/JCI113997
  • Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2003;111:121–124. doi:10.1055/s-2003-39781
  • Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13:423–444. doi:10.1089/met.2015.0095
  • Bakker SJ, IJzerman RG, Teerlink T, Westerhoff HV, Gans RO, Heine RJ. Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis. 2000;148:17–21. doi:10.1016/S0021-9150(99)00329-9
  • Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183–195. doi:10.1007/s00223-014-9915-y
  • Slentz CA, Houmard JA, Kraus WE. Exercise, abdominal obesity, skeletal muscle, and metabolic risk: evidence for a dose response. Obesity (Silver Spring). 2009;17 Suppl 3:S27–33.
  • Essen B, Jansson E, Henriksson J, Taylor AW, Saltin B. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand. 1975;95:153–165. doi:10.1111/j.1748-1716.1975.tb10038.x
  • Sanchez B, Li J, Bragos R, Rutkove SB. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue. Phys Med Biol. 2014;59:2369–2380. doi:10.1088/0031-9155/59/10/2369
  • Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12:330. doi:10.1038/s41467-020-20123-1
  • Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambele-Pearson G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology. 2016;17:467–483. doi:10.1007/s10522-015-9626-4
  • Raghupathy R, McLean RR, Kiel DP, Hannan MT, Sahni S. Higher abdominal adiposity is associated with higher lean muscle mass but lower muscle quality in middle-aged and older men and women: the Framingham Heart Study. Aging Clin Exp Res. 2023;35(7):1477–1485. doi:10.1007/s40520-023-02427-6
  • Bohannon RW. Grip strength: an indispensable biomarker for older adults. Clin Interv Aging. 2019;14:1681–1691. doi:10.2147/CIA.S194543
  • Chang CY, Chu NF, Lin MH, et al. Association between grip strength, obesity, and cardiometabolic risk factors among the community-dwelling elderly population in Taiwan. Int J Environ Res Public Health. 2022;19:11359. doi:10.3390/ijerph191811359
  • Lee MR, Jung SM, Bang H, Kim HS, Kim YB. Association between muscle strength and type 2 diabetes mellitus in adults in Korea: data from the Korea national health and nutrition examination survey (KNHANES) VI. Medicine (Baltimore). 2018;97:e10984. doi:10.1097/MD.0000000000010984
  • Arosio B, Calvani R, Ferri E, et al. Sarcopenia and cognitive decline in older adults: targeting the muscle-brain axis. Nutrients. 2023;15:1853.
  • Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84:275–294. doi:10.1016/0022-510X(88)90132-3
  • Melton LJ 3rd, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL. Epidemiology of sarcopenia. J Am Geriatr Soc. 2000;48:625–630. doi:10.1111/j.1532-5415.2000.tb04719.x
  • Ji T, Li Y, Ma L. Sarcopenic obesity: an emerging public health problem. Aging Dis. 2022;13:379–388. doi:10.14336/AD.2021.1006
  • Liu C, Cheng KY, Tong X, et al. The role of obesity in sarcopenia and the optimal body composition to prevent against sarcopenia and obesity. Front Endocrinol (Lausanne). 2023;14:1077255. doi:10.3389/fendo.2023.1077255
  • Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437–448. doi:10.1111/j.1749-6632.2000.tb06498.x
  • Nishikawa H, Asai A, Fukunishi S, Nishiguchi S, Higuchi K. Metabolic syndrome and Sarcopenia. Nutrients. 2021;13:3519. doi:10.3390/nu13103519
  • Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. 2016;5:518–534. doi:10.1002/wdev.230
  • Albers PH, Pedersen AJ, Birk JB, et al. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes. 2015;64:485–497. doi:10.2337/db14-0590
  • Dohm GL, Tapscott EB, Pories WJ, et al. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988;82:486–494. doi:10.1172/JCI113622
  • Elton CW, Tapscott EB, Pories WJ, Dohm GL. Effect of moderate obesity on glucose transport in human muscle. Horm Metab Res. 1994;26:181–183. doi:10.1055/s-2007-1000807
  • Friedman JE, Caro JF, Pories WJ, Azevedo JL Jr, Dohm GL. Glucose metabolism in incubated human muscle: effect of obesity and non-insulin-dependent diabetes mellitus. Metabolism. 1994;43:1047–1054. doi:10.1016/0026-0495(94)90188-0
  • Tanner CJ, Barakat HA, Dohm GL, et al. Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab. 2002;282:E1191–1196. doi:10.1152/ajpendo.00416.2001
  • Akhmedov D, Berdeaux R. The effects of obesity on skeletal muscle regeneration. Front Physiol. 2013;4:371. doi:10.3389/fphys.2013.00371
  • Weyer C, Snitker S, Rising R, Bogardus C, Ravussin E. Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects. Int J Obes Relat Metab Disord. 1999;23:715–722. doi:10.1038/sj.ijo.0800910
  • Felber JP, Ferrannini E, Golay A, et al. Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes. 1987;36:1341–1350. doi:10.2337/diab.36.11.1341
  • Singh R, Cuervo AM. Autophagy in the cellular energetic balance. Cell Metab. 2011;13:495–504. doi:10.1016/j.cmet.2011.04.004
  • Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med. 2016;100:108–122. doi:10.1016/j.freeradbiomed.2016.04.200
  • Mirza MS. Obesity, visceral fat, and NAFLD: querying the role of adipokines in the progression of nonalcoholic fatty liver disease. ISRN Gastroenterol. 2011;2011:592404. doi:10.5402/2011/592404
  • Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008;7:95–96. doi:10.1016/j.cmet.2007.12.009
  • Mavrogiannaki AN, Migdalis IN. Nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular disease: newer data. Int J Endocrinol. 2013;2013:450639. doi:10.1155/2013/450639
  • Monsour HP, Frenette CT, Wyne K. Fatty liver: a link to cardiovascular disease--its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J. 2012;8:21–25. doi:10.14797/mdcj-8-3-21
  • Asaoka Y, Terai S, Sakaida I, Nishina H. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech. 2013;6:905–914. doi:10.1242/dmm.011981
  • Luo Y, Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. Immun Inflamm Dis. 2021;9:59–73. doi:10.1002/iid3.391
  • Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21. doi:10.1016/j.bbi.2014.04.001
  • Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–1334. doi:10.1172/JCI37385
  • Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90:23–46. doi:10.1152/physrev.00019.2009
  • Softic S, Stanhope KL, Boucher J, et al. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci. 2020;57:308–322. doi:10.1080/10408363.2019.1711360
  • Matsuura F, Yamashita S, Nakamura T, et al. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism. 1998;47:929–933. doi:10.1016/S0026-0495(98)90346-8
  • Sanchez-Lozada LG, Andres-Hernando A, Garcia-Arroyo FE, et al. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. J Biol Chem. 2019;294:4272–4281. doi:10.1074/jbc.RA118.006158
  • Parbo P, Ismail R, Hansen KV, et al. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain. 2017;140:2002–2011. doi:10.1093/brain/awx120
  • Laurent C, Buee L, Blum D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed J. 2018;41:21–33. doi:10.1016/j.bj.2018.01.003
  • Song XM, Yu Q, Dong X, et al. Aldose reductase inhibitors attenuate beta-amyloid-induced TNF-alpha production in microlgia via ROS-PKC-mediated NF-kappaB and MAPK pathways. Int Immunopharmacol. 2017;50:30–37. doi:10.1016/j.intimp.2017.06.005
  • Yan J, Zheng K, Zhang X, Jiang Y. Fructose Consumption is associated with a higher risk of dementia and Alzheimer’s disease: a prospective cohort study. J Prev Alzheimers Dis. 2023;10:186–192. doi:10.14283/jpad.2023.7
  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36:587–597. doi:10.1016/j.tins.2013.07.001
  • Rink C, Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal. 2011;14:1889–1903. doi:10.1089/ars.2010.3474
  • Hillman EM. Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci. 2014;37:161–181. doi:10.1146/annurev-neuro-071013-014111
  • Cipolla MJ. The cerebral circulation. San Rafael (CA); 2009.
  • Claassen J, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101:1487–1559. doi:10.1152/physrev.00022.2020
  • Mizee MR, de Vries HE. Blood-brain barrier regulation: environmental cues controlling the onset of barrier properties. Tissue Barriers. 2013;1:e26882. doi:10.4161/tisb.26882
  • Nehlig A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids. 2004;70:265–275. doi:10.1016/j.plefa.2003.07.006
  • Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond). 2022;19:52. doi:10.1186/s12986-022-00687-z
  • Kacem K, Lacombe P, Seylaz J, Bonvento G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia. 1998;23:1–10. doi:10.1002/(SICI)1098-1136(199805)23:1<1::AID-GLIA1>3.0.CO;2-B
  • Watanabe T, Matsushima S, Okazaki M, et al. Localization and ontogeny of GLUT3 expression in the rat retina. Brain Res Dev Brain Res. 1996;94:60–66. doi:10.1016/0165-3806(96)00044-2
  • Leloup C, Arluison M, Kassis N, et al. Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Brain Res Mol Brain Res. 1996;38:45–53. doi:10.1016/0169-328X(95)00306-D
  • Kobayashi M, Nikami H, Morimatsu M, Saito M. Expression and localization of insulin-regulatable glucose transporter (GLUT4) in rat brain. Neurosci Lett. 1996;213:103–106. doi:10.1016/0304-3940(96)12845-7
  • Maher F. Immunolocalization of GLUT1 and GLUT3 glucose transporters in primary cultured neurons and glia. J Neurosci Res. 1995;42:459–469. doi:10.1002/jnr.490420404
  • Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997;21:2–21. doi:10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C
  • Alosco ML, Spitznagel MB, Raz N, et al. Obesity interacts with cerebral hypoperfusion to exacerbate cognitive impairment in older adults with heart failure. Cerebrovasc Dis Extra. 2012;2:88–98. doi:10.1159/000343222
  • Selim M, Jones R, Novak P, Zhao P, Novak V. The effects of body mass index on cerebral blood flow velocity. Clin Auton Res. 2008;18:331–338. doi:10.1007/s10286-008-0490-z
  • Willeumier KC, Taylor DV, Amen DG. Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity (Silver Spring). 2011;19:1095–1097. doi:10.1038/oby.2011.16
  • Pegueroles J, Pane A, Vilaplana E, et al. Obesity impacts brain metabolism and structure independently of amyloid and tau pathology in healthy elderly. Alzheimers Dement (Amst). 2020;12:e12052.
  • Ishibashi K, Onishi A, Fujiwara Y, Ishiwata K, Ishii K. Relationship between Alzheimer disease-like pattern of 18F-FDG and fasting plasma glucose levels in cognitively normal volunteers. J Nucl Med. 2015;56:229–233. doi:10.2967/jnumed.114.150045
  • Burns CM, Chen K, Kaszniak AW, et al. Higher serum glucose levels are associated with cerebral hypometabolism in Alzheimer regions. Neurology. 2013;80:1557–1564. doi:10.1212/WNL.0b013e31828f17de
  • Honea RA, John CS, Green ZD, et al. Relationship of fasting glucose and longitudinal Alzheimer’s disease imaging markers. Alzheimers Dement (N Y). 2022;8:e12239. doi:10.1002/trc2.12239
  • Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabet Res Clin Pract. 2005;69:29–35. doi:10.1016/j.diabres.2004.11.007
  • Matulewicz N, Karczewska-Kupczewska M. Insulin resistance and chronic inflammation. Postepy Hig Med Dosw (Online). 2016;70:1245–1258.
  • Mauer J, Denson JL, Bruning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 2015;36:92–101. doi:10.1016/j.it.2014.12.008
  • Lyngso D, Simonsen L, Bulow J. Interleukin-6 production in human subcutaneous abdominal adipose tissue: the effect of exercise. J Physiol. 2002;543:373–378. doi:10.1113/jphysiol.2002.019380
  • van Hall G, Steensberg A, Sacchetti M, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003;88:3005–3010. doi:10.1210/jc.2002-021687
  • Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH, et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 2019;29:844–855 e843. doi:10.1016/j.cmet.2018.12.007
  • Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–190. doi:10.1038/nm1166
  • Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 1995;95:2111–2119. doi:10.1172/JCI117899
  • Remels AH, Langen RC, Gosker HR, et al. PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab. 2009;297:E174–183. doi:10.1152/ajpendo.90632.2008
  • Wascher TC, Lindeman JH, Sourij H, Kooistra T, Pacini G, Roden M. Chronic TNF-alpha neutralization does not improve insulin resistance or endothelial function in ”healthy” men with metabolic syndrome. Mol Med. 2011;17:189–193. doi:10.2119/molmed.2010.00221
  • Bernstein LE, Berry J, Kim S, Canavan B, Grinspoon SK. Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med. 2006;166:902–908. doi:10.1001/archinte.166.8.902
  • Stanley TL, Zanni MV, Johnsen S, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E146–150. doi:10.1210/jc.2010-1170
  • Watts G. Nobel prize is awarded to doctors who discovered H pylori. BMJ. 2005;331:795. doi:10.1136/bmj.331.7520.795
  • Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:51. doi:10.1186/s13073-016-0307-y
  • Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801:1175–1183. doi:10.1016/j.bbalip.2010.07.007
  • Yao Y, Cai X, Fei W, Ye Y, Zhao M, Zheng C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr. 2022;62:1–12. doi:10.1080/10408398.2020.1854675
  • Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17:120. doi:10.1186/s12866-017-1027-1
  • Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes Lond. 2008;32:1720–1724. doi:10.1038/ijo.2008.155
  • Zhang Q, Hu N. Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2020;13:5003–5014. doi:10.2147/DMSO.S286430
  • Trikha SRJ, Lee DM, Ecton KE, et al. Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction and glucose intolerance. Gut Microbes. 2021;13:1940791. doi:10.1080/19490976.2021.1940791
  • Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916 e917. doi:10.1053/j.gastro.2012.06.031
  • Kootte RS, Levin E, Salojarvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611–619 e616. doi:10.1016/j.cmet.2017.09.008
  • Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13:1–24. doi:10.1080/19490976.2021.1897212
  • D’Alessio DA, Kahn SE, Leusner CR, Ensinck JW. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest. 1994;93:2263–2266. doi:10.1172/JCI117225
  • Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014;2014:162021. doi:10.1155/2014/162021
  • Morris JK, John CS, Green ZD, et al. Characterization of the meal-stimulated incretin response and relationship with structural brain outcomes in aging and Alzheimer’s Disease. Front Neurosci. 2020;14:608862. doi:10.3389/fnins.2020.608862
  • Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. doi:10.1155/2017/8416763
  • Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans. 2001;29:345–350. doi:10.1042/bst0290345
  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–462. doi:10.1016/j.cub.2014.03.034
  • Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol. 2021;12:627837. doi:10.3389/fphys.2021.627837
  • Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8:2003–2014. doi:10.3969/j.issn.1673-5374.2013.21.009
  • Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842:1240–1247. doi:10.1016/j.bbadis.2013.10.015
  • Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106–107:17–32. doi:10.1016/j.pneurobio.2013.04.004
  • Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal. 2015;22:1230–1242. doi:10.1089/ars.2014.6158
  • Arora D, Jain P, Singh N, Kaur H, Bhatla SC. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res. 2016;50:291–303. doi:10.3109/10715762.2015.1118473
  • Haruna Y, Morita Y, Komai N, et al. Endothelial dysfunction in rat adjuvant-induced arthritis: vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum. 2006;54:1847–1855. doi:10.1002/art.21891
  • Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008;103:398–406. doi:10.1007/s00395-008-0733-0
  • Anderson TJ. Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol. 1999;34:631–638. doi:10.1016/S0735-1097(99)00259-4
  • Venturelli M, Pedrinolla A, Boscolo Galazzo I, et al. Impact of nitric oxide bioavailability on the progressive cerebral and peripheral circulatory impairments during aging and Alzheimer’s disease. Front Physiol. 2018;9:169. doi:10.3389/fphys.2018.00169
  • Smith KJ, Kapoor R, Felts PA. Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol. 1999;9:69–92. doi:10.1111/j.1750-3639.1999.tb00212.x
  • Yang K, Wu Z, Long J, et al. White matter changes in Parkinson’s disease. NPJ Parkinsons Dis. 2023;9:150. doi:10.1038/s41531-023-00592-z
  • Kloppenborg RP, Nederkoorn PJ, Geerlings MI, van den Berg E. Presence and progression of white matter hyperintensities and cognition: a meta-analysis. Neurology. 2014;82:2127–2138. doi:10.1212/WNL.0000000000000505
  • Bouhrara M, Khattar N, Elango P, Resnick SM, Ferrucci L, Spencer RG. Evidence of association between obesity and lower cerebral myelin content in cognitively unimpaired adults. Int J Obes Lond. 2021;45:850–859. doi:10.1038/s41366-021-00749-x
  • Laporte JP, Faulkner ME, Gong Z, et al. Hypertensive adults exhibit lower myelin content: a multicomponent relaxometry and diffusion magnetic resonance imaging study. Hypertension. 2023;80:1728–1738. doi:10.1161/HYPERTENSIONAHA.123.21012
  • Burzynska AZ, Anderson C, Arciniegas DB, et al. Metabolic syndrome and adiposity: risk factors for decreased myelin in cognitively healthy adults. Cereb Circ Cogn Behav. 2023;5:100180. doi:10.1016/j.cccb.2023.100180
  • Hindle JV. Ageing, neurodegeneration and Parkinson’s disease. Age Ageing. 2010;39:156–161. doi:10.1093/ageing/afp223
  • Pagano G, Polychronis S, Wilson H, et al. Diabetes mellitus and Parkinson disease. Neurology. 2018;90:e1654–e1662. doi:10.1212/WNL.0000000000005475
  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–666. doi:10.1001/archneur.61.5.661
  • Ismail Z, Malick A, Smith EE, Schweizer T, Fischer C. Depression versus dementia: is this construct still relevant? Neurodegener Dis Manag. 2014;4:119–126. doi:10.2217/nmt.14.5
  • Djamshidian A, Friedman JH. Anxiety and depression in Parkinson’s disease. Curr Treat Options Neurol. 2014;16:285. doi:10.1007/s11940-014-0285-6
  • Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi:10.1126/science.8346443
  • Linton MF, Gish R, Hubl ST, et al. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest. 1991;88:270–281. doi:10.1172/JCI115288
  • Martinez-Morillo E, Hansson O, Atagi Y, et al. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol. 2014;127:633–643. doi:10.1007/s00401-014-1266-2
  • Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20:68–80. doi:10.1006/exnr.1994.1044
  • Triebswetter C, Kiely M, Khattar N, et al. Differential associations between apolipoprotein E alleles and cerebral myelin content in normative aging. Neuroimage. 2022;251:118988. doi:10.1016/j.neuroimage.2022.118988
  • Belvisi D, Pellicciari R, Fabbrini A, et al. Risk factors of Parkinson disease: simultaneous assessment, interactions, and etiologic subtypes. Neurology. 2020;95:e2500–e2508. doi:10.1212/WNL.0000000000010813
  • Ettle B, Kerman BE, Valera E, et al. alpha-Synuclein-induced myelination deficit defines a novel interventional target for multiple system atrophy. Acta Neuropathol. 2016;132:59–75. doi:10.1007/s00401-016-1572-y
  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–840. doi:10.1038/42166
  • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–2047. doi:10.1126/science.276.5321.2045
  • Peng C, Gathagan RJ, Covell DJ, et al. Cellular milieu imparts distinct pathological alpha-synuclein strains in alpha-synucleinopathies. Nature. 2018;557:558–563. doi:10.1038/s41586-018-0104-4
  • de Bem AF, Krolow R, Farias HR, et al. Animal models of metabolic disorders in the study of neurodegenerative diseases: an overview. Front Neurosci. 2020;14:604150. doi:10.3389/fnins.2020.604150
  • Wieckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev. 2021;70:101397. doi:10.1016/j.arr.2021.101397
  • Amelianchik A, Sweetland-Martin L, Norris EH. The effect of dietary fat consumption on Alzheimer’s disease pathogenesis in mouse models. Transl Psychiatry. 2022;12:293. doi:10.1038/s41398-022-02067-w
  • Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol. 1994;126:88–94.
  • Refolo LM, Malester B, LaFrancois J, et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000;7:321–331. doi:10.1006/nbdi.2000.0304
  • Ullrich C, Pirchl M, Humpel C. Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Mol Cell Neurosci. 2010;45:408–417. doi:10.1016/j.mcn.2010.08.001
  • Moreira EL, de Oliveira J, Engel DF, et al. Hypercholesterolemia induces short-term spatial memory impairments in mice: up-regulation of acetylcholinesterase activity as an early and causal event? J Neural Transm (Vienna). 2014;121:415–426. doi:10.1007/s00702-013-1107-9
  • Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 2004;18:902–904. doi:10.1096/fj.03-0978fje
  • Wang X, Zheng W, Xie JW, et al. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener. 2010;5:46. doi:10.1186/1750-1326-5-46
  • Hascup ER, Broderick SO, Russell MK, et al. Diet-induced insulin resistance elevates hippocampal glutamate as well as VGLUT1 and GFAP expression in AbetaPP/PS1 mice. J Neurochem. 2019;148:219–237. doi:10.1111/jnc.14634
  • Yekollu SK, Thomas R, O’Sullivan B. Targeting curcusomes to inflammatory dendritic cells inhibits NF-kappaB and improves insulin resistance in obese mice. Diabetes. 2011;60:2928–2938. doi:10.2337/db11-0275
  • Hasegawa Y, Saito T, Ogihara T, et al. Blockade of the nuclear factor-kappaB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation. 2012;125:1122–1133. doi:10.1161/CIRCULATIONAHA.111.054346
  • Wang C, Fan L, Khawaja RR, et al. Microglial NF-kappaB drives tau spreading and toxicity in a mouse model of tauopathy. Nat Commun. 2022;13:1969. doi:10.1038/s41467-022-29552-6
  • Sandhu M, Irfan HM, Shah SA, et al. Friedelin attenuates neuronal dysfunction and memory impairment by inhibition of the activated JNK/NF-kappaB signalling pathway in scopolamine-induced mice model of neurodegeneration. Molecules. 2022;27. doi:10.3390/molecules28010027
  • Dye L, Boyle NB, Champ C, Lawton C. The relationship between obesity and cognitive health and decline. Proc Nutr Soc. 2017;76:443–454. doi:10.1017/S0029665117002014
  • Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1037–1045. doi:10.1016/j.bbadis.2016.04.017
  • Garcia-Ptacek S, Faxen-Irving G, Cermakova P, Eriksdotter M, Religa D. Body mass index in dementia. Eur J Clin Nutr. 2014;68:1204–1209. doi:10.1038/ejcn.2014.199
  • Lung T, Jan S, Tan EJ, Killedar A, Hayes A. Impact of overweight, obesity and severe obesity on life expectancy of Australian adults. Int J Obes Lond. 2019;43:782–789. doi:10.1038/s41366-018-0210-2
  • Buchman AS, Capuano AW, VanderHorst V, et al. Brain beta-amyloid links the association of change in body mass index with cognitive decline in community-dwelling older adults. J Gerontol a Biol Sci Med Sci. 2023;78:277–285. doi:10.1093/gerona/glab320
  • Clark LR, Koscik RL, Allison SL, et al. Hypertension and obesity moderate the relationship between beta-amyloid and cognitive decline in midlife. Alzheimers Dement. 2019;15:418–428. doi:10.1016/j.jalz.2018.09.008
  • Herrmann MJ, Tesar AK, Beier J, Berg M, Warrings B. Grey matter alterations in obesity: a meta-analysis of whole-brain studies. Obes Rev. 2019;20:464–471. doi:10.1111/obr.12799
  • Papageorgiou I, Astrakas LG, Xydis V, et al. Abnormalities of brain neural circuits related to obesity: a diffusion tensor imaging study. Magn Reson Imaging. 2017;37:116–121. doi:10.1016/j.mri.2016.11.018
  • Repple J, Opel N, Meinert S, et al. Elevated body-mass index is associated with reduced white matter integrity in two large independent cohorts. Psychoneuroendocrinology. 2018;91:179–185. doi:10.1016/j.psyneuen.2018.03.007
  • Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–1356. doi:10.1001/jama.1997.03550160069041
  • Gustafson D, Lissner L, Bengtsson C, Bjorkelund C, Skoog I. A 24-year follow-up of body mass index and cerebral atrophy. Neurology. 2004;63:1876–1881. doi:10.1212/01.WNL.0000141850.47773.5F
  • Zhu D, Chung HF, Pandeya N, et al. Body mass index and age at natural menopause: an international pooled analysis of 11 prospective studies. Eur J Epidemiol. 2018;33:699–710. doi:10.1007/s10654-018-0367-y
  • Lu W, Guo W, Hou K, et al. Grey matter differences associated with age and sex hormone levels between premenopausal and perimenopausal women: a voxel-based morphometry study. J Neuroendocrinol. 2018;30:e12655. doi:10.1111/jne.12655
  • Mosconi L, Rahman A, Diaz I, et al. Increased Alzheimer’s risk during the menopause transition: a 3-year longitudinal brain imaging study. PLoS One. 2018;13:e0207885. doi:10.1371/journal.pone.0207885
  • Franz CE, Xian H, Lew D, et al. Body mass trajectories and cortical thickness in middle-aged men: a 42-year longitudinal study starting in young adulthood. Neurobiol Aging. 2019;79:11–21. doi:10.1016/j.neurobiolaging.2019.03.003
  • Morys F, Dadar M, Dagher A. Association between midlife obesity and its metabolic consequences, cerebrovascular disease, and cognitive decline. J Clin Endocrinol Metab. 2021;106:e4260–e4274. doi:10.1210/clinem/dgab135
  • Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1:1155–1161. doi:10.1038/nm1195-1155
  • Alexander C, Cochran CJ, Gallicchio L, Miller SR, Flaws JA, Zacur H. Serum leptin levels, hormone levels, and hot flashes in midlife women. Fertil Steril. 2010;94:1037–1043. doi:10.1016/j.fertnstert.2009.04.001
  • Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–311. doi:10.1016/0196-9781(96)00025-3
  • Garza JC, Guo M, Zhang W, Lu XY. Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem. 2008;283:18238–18247. doi:10.1074/jbc.M800053200
  • Narita K, Kosaka H, Okazawa H, Murata T, Wada Y. Relationship between plasma leptin level and brain structure in elderly: a voxel-based morphometric study. Biol Psychiatry. 2009;65:992–994. doi:10.1016/j.biopsych.2008.10.006
  • Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021;12:585887. doi:10.3389/fendo.2021.585887
  • Witte AV, Kobe T, Graunke A, et al. Impact of leptin on memory function and hippocampal structure in mild cognitive impairment. Hum Brain Mapp. 2016;37:4539–4549. doi:10.1002/hbm.23327
  • Savica R, Rocca WA, Ahlskog JE. When does Parkinson disease start? Arch Neurol. 2010;67:798–801. doi:10.1001/archneurol.2010.135
  • Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–546.
  • Gallego M, Setien R, Izquierdo MJ, Casis O, Casis E. Diabetes-induced biochemical changes in central and peripheral catecholaminergic systems. Physiol Res. 2003;52:735–741. doi:10.33549/physiolres.930334
  • Shimomura Y, Shimizu H, Takahashi M, et al. Changes in ambulatory activity and dopamine turnover in streptozotocin-induced diabetic rats. Endocrinology. 1988;123:2621–2625. doi:10.1210/endo-123-6-2621
  • Jones KT, Woods C, Zhen J, Antonio T, Carr KD, Reith ME. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J Neurochem. 2017;140:728–740. doi:10.1111/jnc.13930
  • Anitha M, Abraham PM, Paulose CS. Striatal dopamine receptors modulate the expression of insulin receptor, IGF-1 and GLUT-3 in diabetic rats: effect of pyridoxine treatment. Eur J Pharmacol. 2012;696:54–61. doi:10.1016/j.ejphar.2012.09.006
  • Choi JY, Jang EH, Park CS, Kang JH. Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med. 2005;38:806–816. doi:10.1016/j.freeradbiomed.2004.12.008
  • Morris JK, Bomhoff GL, Stanford JA, Geiger PC. Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1082–1090. doi:10.1152/ajpregu.00449.2010
  • Sharma S, Taliyan R. High fat diet feeding induced insulin resistance exacerbates 6-OHDA mediated neurotoxicity and behavioral abnormalities in rats. Behav Brain Res. 2018;351:17–23. doi:10.1016/j.bbr.2018.05.025
  • Bousquet M, St-Amour I, Vandal M, Julien P, Cicchetti F, Calon F. High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice. Neurobiol Dis. 2012;45:529–538. doi:10.1016/j.nbd.2011.09.009
  • Griffioen KJ, Rothman SM, Ladenheim B, et al. Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant alpha-synuclein. Neurobiol Aging. 2013;34:928–935. doi:10.1016/j.neurobiolaging.2012.07.008
  • Rotermund C, Truckenmuller FM, Schell H, Kahle PJ. Diet-induced obesity accelerates the onset of terminal phenotypes in alpha-synuclein transgenic mice. J Neurochem. 2014;131:848–858. doi:10.1111/jnc.12813
  • Morris JK, Bomhoff GL, Gorres BK, et al. Insulin resistance impairs nigrostriatal dopamine function. Exp Neurol. 2011;231:171–180. doi:10.1016/j.expneurol.2011.06.005
  • Hebert MA, Gerhardt GA. Normal and drug-induced locomotor behavior in aging: comparison to evoked DA release and tissue content in Fischer 344 rats. Brain Res. 1998;797:42–54. doi:10.1016/S0006-8993(98)00370-9
  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK. Glutathione, iron and Parkinson’s disease. Biochem Pharmacol. 2002;64:1037–1048. doi:10.1016/S0006-2952(02)01174-7
  • Ma D, Shuler JM, Raider KD, et al. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats. Brain Res. 2015;1613:49–58. doi:10.1016/j.brainres.2015.03.053
  • Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2016;46:292–300. doi:10.1159/000445751
  • Wright Willis A, Evanoff BA, Lian M, Criswell SR, Racette BA. Geographic and ethnic variation in Parkinson disease: a population-based study of US Medicare beneficiaries. Neuroepidemiology. 2010;34:143–151. doi:10.1159/000275491
  • Narayan S, Liew Z, Bronstein JM, Ritz B. Occupational pesticide use and Parkinson’s disease in the Parkinson Environment Gene (PEG) study. Environ Int. 2017;107:266–273. doi:10.1016/j.envint.2017.04.010
  • Dannawi M, Riachi ME, Haddad AF, et al. Influence of intermittent fasting on prediabetes-induced neuropathy: insights on a novel mechanistic pathway. Metabol Open. 2022;14:100175. doi:10.1016/j.metop.2022.100175
  • Schonknecht YB, Crommen S, Stoffel-Wagner B, et al. Acute effects of three different meal patterns on postprandial metabolism in older individuals with a risk phenotype for cardiometabolic diseases: a randomized controlled crossover trial. Mol Nutr Food Res. 2020;64:e1901035. doi:10.1002/mnfr.201901035
  • Schonknecht YB, Crommen S, Stoffel-Wagner B, et al. APOE varepsilon4 is associated with postprandial inflammation in older adults with metabolic syndrome traits. Nutrients. 2021;13:3924.
  • Witte AV, Fobker M, Gellner R, Knecht S, Floel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106:1255–1260. doi:10.1073/pnas.0808587106
  • Prehn K, Jumpertz von schwartzenberg R, Mai K, et al. Caloric restriction in older adults-differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex. 2017;27:1765–1778. doi:10.1093/cercor/bhw008
  • Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF Jr. Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969;48:574–583. doi:10.1172/JCI106016
  • Phillips MCL, Deprez LM, Mortimer GMN, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimers Res Ther. 2021;13:51. doi:10.1186/s13195-021-00783-x
  • Ota M, Matsuo J, Ishida I, et al. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci Lett. 2019;690:232–236. doi:10.1016/j.neulet.2018.10.048
  • Phillips MCL, Murtagh DKJ, Gilbertson LJ, Asztely FJS, Lynch CDP. Low-fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov Disord. 2018;33:1306–1314. doi:10.1002/mds.27390
  • Myers J, Kokkinos P, Nyelin E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients. 2019;11:1652.
  • Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799–815. doi:10.1161/CIRCRESAHA.118.312669
  • Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37:2243–2257. doi:10.1016/j.neubiorev.2013.04.005
  • Chodzko-Zajko WJ, Proctor DN; American College of Sports M. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–1530. doi:10.1249/MSS.0b013e3181a0c95c
  • Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise. Obes Res. 2002;10:575–584. doi:10.1038/oby.2002.78
  • Morris JK, Vidoni ED, Johnson DK, et al. Aerobic exercise for Alzheimer’s disease: a randomized controlled pilot trial. PLoS One. 2017;12:e0170547. doi:10.1371/journal.pone.0170547
  • Dauwan M, Begemann MJH, Slot MIE, Lee EHM, Scheltens P, Sommer IEC. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and meta-analysis of randomized controlled trials. J Neurol. 2021;268:1222–1246. doi:10.1007/s00415-019-09493-9
  • Schenkman M, Moore CG, Kohrt WM, et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: a Phase 2 randomized clinical trial. JAMA Neurol. 2018;75:219–226. doi:10.1001/jamaneurol.2017.3517
  • Motiani KK, Collado MC, Eskelinen JJ, et al. Exercise training modulates gut microbiota profile and improves endotoxemia. Med Sci Sports Exerc. 2020;52:94–104. doi:10.1249/MSS.0000000000002112
  • Numakawa T, Odaka H. The Role of neurotrophin signaling in age-related cognitive decline and cognitive diseases. Int J Mol Sci. 2022;23:7726. doi:10.3390/ijms23147726
  • Kim CS, Cha L, Sim M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol a Biol Sci Med Sci. 2021;76:32–40. doi:10.1093/gerona/glaa090
  • Berchtold NC, Chinn G, Chou M, Kesslak JP, Cotman CW. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133:853–861. doi:10.1016/j.neuroscience.2005.03.026
  • Kim DM, Leem YH. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction. Neuroscience. 2016;324:271–285. doi:10.1016/j.neuroscience.2016.03.019
  • Gaitan JM, Moon HY, Stremlau M, et al. Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer’s disease. Front Endocrinol (Lausanne). 2021;12:660181. doi:10.3389/fendo.2021.660181
  • Atrooz F, Salim S. Sleep deprivation, oxidative stress and inflammation. Adv Protein Chem Struct Biol. 2020;119:309–336.
  • Hargens TA, Kaleth AS, Edwards ES, Butner KL. Association between sleep disorders, obesity, and exercise: a review. Nat Sci Sleep. 2013;5:27–35. doi:10.2147/NSS.S34838
  • Lucey BP, Hicks TJ, McLeland JS, et al. Effect of sleep on overnight cerebrospinal fluid amyloid beta kinetics. Ann Neurol. 2018;83:197–204. doi:10.1002/ana.25117
  • Curcio G, Ferrara M, De Gennaro L. Sleep loss, learning capacity and academic performance. Sleep Med Rev. 2006;10:323–337. doi:10.1016/j.smrv.2005.11.001
  • Gillen-O’Neel C, Huynh VW, Fuligni AJ. To study or to sleep? The academic costs of extra studying at the expense of sleep. Child Dev. 2013;84:133–142. doi:10.1111/j.1467-8624.2012.01834.x
  • Krause AJ, Simon EB, Mander BA, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18:404–418. doi:10.1038/nrn.2017.55
  • Rothman SM, Herdener N, Frankola KA, Mughal MR, Mattson MP. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Abeta and pTau in a mouse model of Alzheimer’s disease. Brain Res. 2013;1529:200–208. doi:10.1016/j.brainres.2013.07.010
  • Reutrakul S, Van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism. 2018;84:56–66. doi:10.1016/j.metabol.2018.02.010