12
Views
0
CrossRef citations to date
0
Altmetric
Methodology

Notice on a methodology for characterizing emissions of ultrafine particles/nanoparticles in microenvironments

, , &
Pages 15-27 | Published online: 07 Nov 2013

References

  • Jenkins N, Eager T. Chemical analysis of welding fume particles. Welding Research. 2005;Supp 1:87–93.
  • Card J, Zeldin D, Bonner J, Nestmann E. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295:L400–L411.
  • Oberdörster G, Gelein R, Ferin J, Weiss B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles. Inhal Toxicol. 1995;7:111–124.
  • Tsai C, Pui D. Editorial. J Nanopart Res. 2009;11:1–4.
  • Tsai C, Huang C, Chen S, et al. Exposure assessment of nano-sized and respirable particles at different workplaces. J Nanopart Res. 2011;13:4161–4172.
  • Kreyling W, Semmler M, Erbe F, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002;65:511–535.
  • Oberdörster G. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Particulate Science and Technology. 1996;14:135–151.
  • Donaldson K, Li X, MacNee W. Ultrafine (nanometer) particle mediated lung injury. J Aerosol Sci. 1998;29:553–560.
  • Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001;74:1–8.
  • Driscoll K. Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhal Toxicol. 1996;8:85–98.
  • Fissan H, Neumann S, Trampe A, Pui D, Shin W. Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res. 2007;9:53–59.
  • Phalen R. Particle size-selective sampling for particulate air contaminants. Vincent JH, editor. Cincinnati, OH: ACGIH; 1999.
  • Ostraat M, Thornburg J, Malloy Q. Measurement strategies of airborne nanomaterials. Environ Eng Sci. 2013;30:126–132.
  • Albuquerque P, Gomes J, Bordado J. Assessment of exposure to airborne ultrafine particles in the urban environment of Lisbon, Portugal. J Air Waste Manage Assoc. 2012;62:373–380.
  • Gomes J, Bordado J, Albuquerque P. Monitoring exposure to airborne ultrafine particles in Lisbon, Portugal. Inhal Toxicol. 2012;24:425–433.
  • Bordado J, Gomes J, Albuquerque P. Exposure to airborne ultrafine particles from cooking in Portuguese homes. J Air Waste Manage Assoc. 2012;62:1170–1180.
  • Gomes J, Albuquerque P, Miranda R, Vieira M. Determination of airborne nanoparticles from welding operations. J Toxicol Environ Health A. 2012;75:747–755.
  • Kuhlbusch T, Asbach C, Fissan H, Gohler D, Stinz M. Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol. 2011;8:22.
  • Richman J, Livi K, Geyh A. A scanning transmission electron microscopy method for determination of manganese composition in welding fume as a function of primary particle size. J Aerosol Sci. 2011;42:408–418.
  • Kuhlbusch T, Qrum U, Koch M, Fissan H, Bruckman P, Pfeffer U. PM10 source apportionment at three urban background sites in the Wurten Ruhr area, Germany. J Aerosol Sci. 2004;35:79–90.
  • Ramachandran G, Paulsen D, Watts W, Kittelson D. Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit. 2005;7:728–735.
  • Gomez-Moreno F, Pujadas M, Plaza J, Rodriguez-Maroto J, Martinez-Lozano P, Artinano B. Influence of seasonal factors on the atmospheric particle number concentration and size distribution in Madrid. Atmos Environ. 2011;45:3169–3180.
  • Morawska L, Jayaratne E, Mengersen K, Jamiska M, Thomas S. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos Environ. 2002;36:4375–4383.
  • Pires I, Quintino L, Miranda RMM, Gomes JFP. Fume emissions during gas metal arc welding. Toxicol Environ Chem. 2006;88:385–394.
  • Berlinger B, Benker N, Weinbruch B, Ebert M, Ellingsen D, Thomassen Y. Physicochemical characterization of different welding aerosols. Anal Bioanal Chem. 2011;399:1773–1780.
  • Elihn K, Berg P, Liden G, Correlation between airborne particle concentrations in seven industrial plants and estimated respiratory tract deposition by number, mass and elemental composition. J Aerosol Sci. 2011;42:127–141.
  • Schauer M, Kleemna M, Cass G, Simoneit B. Measurement of emissions from air pollution sources 4. C1-C27 organic compounds. Environ Sci Technol. 2002;36:567–575.
  • Mohr C, DeCarlo P, Hering M, et al. Identification and quantification or organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos Chem Phys Discuss. 2011;11:27383–27420.
  • Hildemann L, Markowski G, Jones M, Cass G. Submicrometer aerosol mass distributions of emissions from boilers, fireplaces, automobiles, diesel trucks and meat cooking operations. Aerosol Sci Technol. 1991;14:138–152.
  • Rogge W, Hildemann L, Mazurek M, Cass G, Simoneit B. Sources of fine organic aerosol. 5. Natural gas home appliances. Environ Sci Technol. 1993;27:2736–2744.
  • Asbach C, Fissan H, Stahlmecke B, Kuhlbusch T, Pui D. Conceptual limitations and extensions of lung-deposited nano particle surface area monitor (NSAM). J Nanopart Res. 2009;11:101–109.
  • Wilson W, Stanek J, Han H, et al. Use of electrical aerosol detector as an indicator of the surface area of fine particles deposited in the lung. J Air Waste Manage Assoc. 2007;57:211–220.
  • Mauderley J. Environmental toxicants: human exposures and their health effects. Lippman M, editor. New York: Van Nostrand Reinhold; 1992.