415
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Antibiotics Combinations and Chitosan Nanoparticles for Combating Multidrug Resistance Acinetobacter baumannii

, , ORCID Icon & ORCID Icon
Pages 3327-3339 | Published online: 20 Aug 2021

References

  • World Health Organization (WHO). List of bacteria for which new antibiotics are urgently needed; 2017. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 610, 2021.
  • RiceLB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–1081. doi:10.1086/53345218419525
  • GordonNC, PngK, WarehamDW. Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(12):5316–5322. doi:10.1128/AAC.00922-1020876375
  • LeeCR, LeeJH, ParkM, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 2017;7:55. doi:10.3389/fcimb.2017.0005528348979
  • WongD, NielsenTB, BonomoRA, et al. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30:409–447. doi:10.1128/CMR.00058-1627974412
  • YangCH, SuPW, MoiSH, ChuangLY. Biofilm formation in Acinetobacter Baumannii: genotype-phenotype correlation. Molecules. 2019;24(10):1849. doi:10.3390/molecules24101849
  • MangasEL, RubioA, Alvarez-MarinR, et al. Pangenome of Acinetobacter baumannii uncovers two groups of genomes, one of them with genes involved in CRISPR/Cas defence systems associated with the absence of plasmids and exclusive genes for biofilm formation. Microb Genom. 2019;5:e000309. doi:10.1099/mgen.0.000309
  • TangB, GongT, ZhouX, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol. 2019;99:190–197. doi:10.1016/j.archoralbio30731369
  • CuiL, WangX, HuangD, et al. CRISPR-cas3 of salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens. 2020;9:53. doi:10.3390/pathogens9010053
  • ChenTL, SiuLK, WuRC, et al. Comparison of one-tube multiplex PCR, automated ribotyping and intergenic spacer (ITS) sequencing for rapid identification of Acinetobacter baumannii. Clin Microbiol Infect. 2007;13:801e6. doi:10.1111/j.1469-0691.2007.01744.x17488329
  • FalahF, ShokoohizadehL, AdabiM. Molecular identification and genotyping of Acinetobacter baumannii isolated from burn patients by PCR and ERIC-PCR. Scars Burn Heal. 2019;5:1–7. doi:10.1177/2059513119831369
  • WangH, ChenM, NiY, et al. Antimicrobial resistance among clinical isolates from the Chinese Surveillance Study (CMSS) 2003–2008. Int J Antimicrobial Agents. 2010;35:227–234. doi:10.1016/j.ijantimicag.2009.11.010
  • CantasL, ShahS, CavacoL, et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013;4:96–110. doi:10.3389/fmicb.2013.0009623675371
  • GootzTD, MarraA. Acinetobacter baumannii: an emerging multidrug-resistant threat. Expert Rev Anti Infect Ther. 2008;6:309–325. doi:10.1586/14787210.6.3.30918588496
  • CoatesAR, HuY. Novel approaches to developing new antibiotics for bacterial infections. Br J Pharmacol. 2007;152:1147–1154. doi:10.1038/sj.bjp.070743217704820
  • LeeNY, WangCL, ChuangYC, et al. Combination carbapenem-sulbactam therapy for critically ill patients with multidrug-resistant Acinetobacter baumannii bacteremia: four case reports and an in vitro combination synergy study. Pharmacother. 2007;27:1506–1511. doi:10.1592/phco.27.11.1506
  • LaneD. Designer combination therapy for cancer. Nat Biotechnol. 2006;24(2):163–164. doi:10.1038/nbt0206-16316465160
  • LiJ, FuY, ZhangJ, et al. Efficacy of tigecycline monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii sequence type 2 in Heilongjiang Province. Ann Palliat Med. 2019;8(5):651–659. doi:10.21037/apm.2019.11.0631865726
  • WisemanLR, WagstaffAJ, BrogdenRN, et al. Meropenem. Drugs. 1995;50:73–101. doi:10.2165/00003495-199550010-000077588092
  • ZavasckiAP, GoldaniLZ, LiJ, NationRL. Nation, Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60(6):1206–1215. doi:10.1093/jac/dkm35717878146
  • JeanSS, HsiehTC, HsuCW, LeeWS, BaiKJ, LamC. Comparison of the clinical efficacy between tigecycline plus extended-infusion imipenem and sulbactam plus imipenem against ventilator-associated pneumonia with pneumonic extensively drug-resistant Acinetobacter baumannii bacteremia, and correlation of clinical efficacy with in vitro synergy tests. J Microbiol Immunol Infect. 2016;49(6):924–933. doi:10.1016/j.jmii.2015.06.00926341302
  • NguyenTV, NguyenTTH, WangSL, et al. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed. 2017;43:3527–3537. doi:10.1007/s11164-016-2428-8
  • MarudovaM, ZaharievN, MilenkovaS, PilichevaB, ViranevaA, YovchevaY. Development and in-vitro characterization of benzydamine loaded chitosan nanoparticles. J Macromolecular Symposia. 2021;395:2000279. doi:10.1002/masy.202000279
  • ParveenS, SahooSK. Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma. Cancer Nanotechnol. 2010;1:47–62. doi:10.1007/s12645-010-0006-026069479
  • KongM, ChenXG, XingK, ParkHJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63. doi:10.1016/j.ijfoodmicro.2010.09.01220951455
  • CostaEM, SilvaS, VicenteS, VeigaM, TavariaF, PintadoMM. Chitosan as an effective inhibitor of multidrug resistant Acinetobacter baumannii. Carbohydr Polym. 2017;178:347–351. doi:10.1016/j.carbpol.2017.09.05529050604
  • BergerJ, ReistM, MayerJM, FeltO, PeppasNA, GurnyR. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34. doi:10.1016/s0939-6411(03)00161-914729078
  • HuB, WangSS, LiJ, ZengXX, HuangQR. Assembly of bioactive peptide–chitosan nanocomplexes. J Phys Chem B. 2011;115(23):7515–7523. doi:10.1021/jp201355721608974
  • QiL, XuZ, JiangX, HuC, ZouX. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–2700. doi:10.1016/j.carres.2004.09.00715519328
  • HebeishAA, RamadanMA, MontaserAS, FaragAM. Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite. Int J Biol Macromol. 2014;68:178–184. doi:10.1016/j.ijbiomac.2014.04.02824768973
  • BerneBJ, PecoraR. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Courier Corporation; 2000. doi:10.1016/0307-4412(77)90025-5
  • Al-OnaziWA, AliMHH. Synthesis and characterization of cerium oxide hybrid with chitosan nanoparticles for enhancing the photodegradation of Congo Red dye. J Mater Sci: Mater Electron. 2021;32:12017–12030. doi:10.1007/s10854-021-05832-7
  • ChiangMC, KuoSC, ChenYC, LeeYT, ChenTL, FungCP. Polymerase chain reaction assay for the detection of Acinetobacter baumannii in endotracheal aspirates from patients in the intensive care unit. J Microbiol Immunol Infect. 2011;44(2):106–110. doi:10.1016/j.jmii.2010.04.00321439512
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. 28th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2018. Available from: https://file.qums.ac.ir/repository/mmrc/CLSI-2018-M100-S28.pdf. Accessed 811, 2021.
  • MagiorakosAP, SrinivasanA, CareyRB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • VersalovicJ, KoeuthT, LupskiR. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 1991;19(24):6823–6831. doi:10.1093/nar/19.24.68231762913
  • TsaiHC, HuangTY, ChenJS, ChenWJ, LinCY, HsuBM. Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus in long-term care facilities in eastern Taiwan. Tzu-Chi Med J. 2019;31(4):222. doi:10.4103/tcmj.tcmj_136_18
  • HsiehMH, ChenMY, VictorLY, ChowJW. Synergy assessed by checkerboard a critical analysis. Diagn Microbiol Infect Dis. 1993;16(4):343–349. doi:10.1016/0732-8893(93)90087-n8495592
  • AbdelkaderMM, AboshanabKM, El-AshryMA, AboulwafaMM. Prevalence of MDR pathogens of bacterial meningitis in Egypt and new synergistic antibiotic combinations. PLoS One. 2017;12(2):e0171349. doi:10.1371/journal.pone.017134928207768
  • AlqahtaniF, AleanizyF, El TahirE, et al. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea. Int J Nanomed. 2020;15:7877–7887. doi:10.2147/ijn.s272736
  • AgarwalM, AgarwalMK, ShrivastavN, et al. Preparation of chitosan nanoparticles and their in-vitro characterization. Int J Life Sci Scienti Res. 2018;4(2):1713–1720. doi:10.21276/ijcesr.2018.4.2.17
  • Mohammadpour DounighiN, EskandariR, AvadiMR, et al. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venom Anim Toxins Incl Trop Dis. 2012;18:44–52. doi:10.1590/S1678-91992012000100006
  • ValgasC, De SouzaSM, SmâniaEFA. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38:369–380. doi:10.1590/S1517-83822007000200034
  • MagaldiS, Mata-EssayagS, Hartung de CaprilesC, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8(1):39–45. doi:10.1016/j.ijid.2003.03.00214690779
  • DoniaM, HamannMT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis. 2003;3(6):338–348. doi:10.1016/s1473-3099(03)00655-812781505
  • KatasH, MohamadA, ZinNM. Physicochemical effects of chitosan-tripolyphosphate nanoparticles on antibacterial activity against gram-positive and gram-negative bacteria. J Med Sci. 2011;11:192–197. doi:10.3923/jms.2011.192.197
  • HuguetA, PensecJ, SoumetC. Resistance in Escherichia coli: variable contribution of efflux pumps with respect to different fluoroquinolones. J Appl Microbiol. 2013;114(5):1294–1299. doi:10.1111/jam.1215623414263
  • HardingCM, HennonSW, FeldmanMF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018;16(2):91–102. doi:10.1038/nrmicro.2017.14829249812
  • PerezF, HujerAM, HujerKM, DeckerBK, RatherPN, BonomoRA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51(10):3471–3484. doi:10.1128/aac.01464-0617646423
  • Bergogne-BérézinE, TownerKJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2):148–165. doi:10.1128/cmr.9.2.1488964033
  • YingC, LiY, WangY, ZhengB, YangC. Investigation of the molecular epidemiology of Acinetobacter baumannii isolated from patients and environmental contamination. J Antibiot. 2015;68(9):562–567. doi:10.1038/ja.2015.30
  • Dalla-CostaLM, IrinoK, RodriguesJ, RiveraIN, TrabulsiLR. Characterization of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR. J Med Microbiol. 1998;47(3):227–234. doi:10.1099/00222615-47-3-2279511828
  • HammoudiD, MoubareckCA, HakimeN, et al. Spread of imipenem-resistant Acinetobacter baumannii co-expressing OXA-23 and GES-11 carbapenemases in Lebanon. Int J Infect Dis. 2015;36:56–61. doi:10.1016/j.ijid.2015.05.01526004171
  • MshachalMA, AbdulrahmanTR, KhudairMS, HassanJS. Molecular detection of multidrug resistance Acinetobacter baumannii from different clinical samples. Iraqi J Med Sci. 2017;15:314–323.
  • Al MarjaniM, Al-AmmarM, KadhemE. Occurrence of ESBL and MBL genes in Pseudomonas aeruginosa and Acinetobacter baumannii isolated from Baghdad, Iraq. Int J Cur Res. 2013;5:2482–2486.
  • SoudeihaMAH, DahdouhEA, AzarE, SarkisDK, DaoudZ. In vitro evaluation of the colistin-carbapenem combination in clinical isolates of A. baumannii using the checkerboard, Etest, and time-kill curve techniques. Front Cell Infect Microbiol. 2017;7:209. doi:10.3389/fcimb.2017.0020928596943
  • KatipW, UitrakulS, OberdorferP. A comparison of colistin versus colistin plus meropenem for the treatment of carbapenem-resistant Acinetobacter baumannii in critically ill patients: a propensity score-matched analysis. Antibiotics. 2020;9(10):647. doi:10.3390/antibiotics9100647
  • PalS, TakYK, SongJM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi:10.1128/aem.02218-0617261510
  • WeirE, LawlorA, WhelanA, ReganF. The use of nanoparticles in anti-microbial materials and their characterization. Analyst. 2008;133(7):835–845. doi:10.1039/b715532h18575632
  • Safari-AmiriM, Mortazavi-DerazkolaS, Salavati-NiasariM, et al. Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation. J Mater Sci Mater Electron. 2017;28:6467–6474. doi:10.1007/s10854-017-6333-8
  • Mortazavi-DerazkolaS, Naimi-JamalMR, GhoreishiSM. Synthesis, characterization, and atenolol delivery application of functionalized mesoporous hydroxyapatite nanoparticles prepared by microwave-assisted co-precipitation method. Curr Drug Deliv. 2016;13(7):1123–1129. doi:10.2174/156720181366616032111554326996370
  • Shafiee ArdestaniM, Bitarafan-RajabiA, MohammadzadehP, et al. Synthesis and characterization of novel 99mTc-DGC nano-complexes for improvement of heart diagnostic. Bioorg Chem. 2020;96:103572. doi:10.1016/j.bioorg.2020.10357231982818
  • EbrahimzadehMA, Mortazavi-DerazkolaS, ZazouliMA. Eco-friendly green synthesis and characterization of novel Fe3O4/SiO2/Cu2O–Ag nanocomposites using Crataegus pentagyna fruit extract for photocatalytic degradation of organic contaminants. J Mater Sci: Mater Electron. 2019;30:10994–11004. doi:10.1007/s10854-019-01440-8
  • XuC, OuM, ZhouH, YangC. Preparation and properties of bifunctional Gd2O3/GQD composite nanoparticles. J Rare Earths. 2021. doi:10.1016/j.jre.2021.06.010
  • ManiS, BalasubramanianB, BalasubramaniR, et al. Synthesis and characterization of proanthocyanidin-chitosan nanoparticles: an assessment on human colorectal carcinoma HT-29 cells. J Photochem Photobiol B: Biol. 2020;210:111966. doi:10.1016/j.jphotobiol.2020.111966
  • Shirzadi-AhodashtiM, EbrahimzadehMA, GhoreishiSM, NaghizadehA, DerazkolaS. Facile and eco-benign synthesis of a novel MnFe2O4@SiO2@Au magnetic nanocomposite with antibacterial properties and enhanced photocatalytic activity under UV and visible-light irradiations. Appl Organomet Chem. 2020;34(5):e5614. doi:10.1002/aoc.5614
  • ZayedMF, EisaWH, Abd ElHameedM, HosamAM, ZeidA. Spectroscopic investigation of chitosan-supported Cu2O/CuO nanocomposite; a separable catalyst for water-pollutants degradation. J Alloys Compd. 2020;835:155306. doi:10.1016/j.jallcom.2020.155306
  • YangW, FuJ, WangT, HeN. Chitosan/sodium tripolyphosphate nanoparticles: preparation, characterization and application as drug carrier. J Biomed Nanotechnol. 2009;5(5):591–595. doi:10.1166/jbn.2009.106720201437
  • GanQ, WangT. Chitosan nanoparticle as protein delivery carrier–systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces. 2007;59(1):24–34. doi:10.1016/j.colsurfb.2007.04.00917555948
  • CobradoL, AzevedoMM, Silva-DiasA, RamosJP, Pina-VazC, RodriguesAG. Cerium, chitosan and hamamelitannin as novel biofilm inhibitors?J Antimicrob Chemother. 2012;67(5):1159–1162. doi:10.1093/jac/dks00722316569
  • PourhajibagherM, HosseiniN, BolukiE, ChiniforushN, BahadorA. Photoelimination potential of chitosan nanoparticles-indocyanine green complex against the biological activities of Acinetobacter baumannii strains: a preliminary in vitro study in burn wound infections. J Lasers Med Sci. 2020;11(2):187–192. doi:10.34172/jlms.2020.3132273961
  • ChenYH, WangWH, LinSH, et al. Synergistic antibacterial effect of casein-AgNPs combined with tigecycline against Acinetobacter baumannii. Polymers. 2021;13(9):1529. doi:10.3390/polym1309152934068784
  • HettaHF, Al-KadmyIMS, KhazaalSS, et al. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci Rep. 2021;11(1):10751. doi:10.1038/s41598-021-90208-434031472
  • MureedS, NazS, HaiderA, et al. Development of multi-concentration Cu: Ag Bimetallic nanoparticles as a promising bactericidal for antibiotic-resistant bacteria as evaluated with molecular docking study. Nanoscale Res Lett. 2021;16(1):91. doi:10.1186/s11671-021-03547-634021844
  • SlavinYN, IvanovaK, HoyoJ, et al. Novel lignin-capped silver nanoparticles against multidrug-resistant bacteria. ACS Appl Mater Interfaces. 2021;13(19):22098–22109. doi:10.1021/acsami.0c1692133945683
  • AbbasiA, GhorbanK, NojoomiF, DadmaneshM. Smaller copper oxide nanoparticles have more biological effects versus breast cancer and nosocomial infections bacteria. Asian Pac J Cancer Prev. 2021;22(3):893–902. doi:10.31557/apjcp.2021.22.3.89333773555
  • ElnaggarYS, ElwakilBH, ElshewemiSS, El-NaggarMY, BekhitAA, OlamaZA. Novel Siwa propolis and colistin-integrated chitosan nanoparticles: elaboration; in vitro and in vivo appraisal. Nanomedicine. 2020;15(13):1269–1284. doi:10.2217/nnm-2019-0467
  • AbdelkaderA, El-MokhtarMA, AbdelkaderO, HamadMA, ElsabahyM, El-GazayerlyON. Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model. Carbohydr Polym. 2017;174:1041–1050. doi:10.1016/j.carbpol.2017.07.03028821026